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Abstract—Renewable energy integration into microgrids has
become a key approach to addressing global energy issues such
as climate change and resource scarcity. However, the variability
of renewable sources and the rising occurrence of High Impact
Low Probability (HILP) events require innovative strategies for
reliable and resilient energy management. This study intro-
duces a practical approach to managing microgrid resilience
through Explainable Deep Reinforcement Learning (XDRL). It
combines the Proximal Policy Optimization (PPO) algorithm
for decision-making with the Local Interpretable Model-agnostic
Explanations (LIME) method to improve the transparency of
the actor network’s decisions. A case study in Ongole, India,
examines a microgrid with wind, solar, and battery components
to validate the proposed approach. The microgrid is simulated
under extreme weather conditions during the Layla cyclone.
LIME is used to analyse scenarios, showing the impact of key
factors such as renewable generation, state of charge, and load
prioritization on decision-making. The results demonstrate a
Resilience Index (RI) of 0.9736 and an estimated battery lifespan
of 15.11 years. LIME analysis reveals the rationale behind the
agent’s actions in idle, charging, and discharging modes, with
renewable generation identified as the most influential feature.
This study shows the effectiveness of integrating advanced DRL
algorithms with interpretable AI techniques to achieve reliable
and transparent energy management in microgrids.

Index Terms—Interpretable and Explainable AI, Microgrid,
Deep Reinforcement Learning, Resilient Energy Management,
Smart Grid

I. INTRODUCTION

The electricity grid has witnessed major changes in recent
years, driven by advancements such as bidirectional communi-
cation between suppliers and consumers, enabling smart grids’
development. Smart grids incorporate concepts like micro-
grids, demand response, prosumers, self-healing systems, and
local electricity markets to meet evolving energy needs [1].
Renewable energy sources have received significant attention
as a response to global warming, the push for net-zero emis-
sions, and the challenges of fossil fuel depletion and pollution

[2]. Microgrids, with their ability to function in both isolated
and grid-connected modes, serve as a practical framework for
leveraging renewable energy despite its intermittent nature [3].

Modern power grids face growing vulnerabilities from nat-
ural disasters and cyber threats, intensified by digitalisation.
These rare but high-impact events underscore the importance
of enhancing resilience in smart grids [4]. At the same time,
advances in Artificial Intelligence (AI) have provided new
tools to tackle challenges in power systems, such as real-
time operations and uncertainties like variable loads (e.g.,
electric vehicles) and energy production [5]. Reinforcement
learning (RL) stands out among AI approaches for its ability
to quickly adapt to dynamic environments and effectively
manage systems without the need for detailed models. This
makes RL particularly suitable for addressing various planning
and operational challenges in power systems, such as optimal
dispatch and control [6].

Recent advancements in Deep Reinforcement Learning
(DRL), which combines RL with Deep Neural Networks
(DNN), have shown outstanding performance in solving com-
plex problems. Despite its potential, DRL’s application in
critical industries such as power systems is still limited due to
concerns over its black-box nature and the lack of transparency
in decision-making [7]. To tackle concerns about the black-
box nature of DNN, along with ethical issues and regulations
like the General Data Protection Regulation (GDPR), eXplain-
able Artificial Intelligence (XAI) has become a prominent
research area in computer science [8]. In DRL, eXplainable
Deep Reinforcement Learning (XDRL) is classified into three
approaches: Interpretable Agents (IA), Intrinsic Explainability
(IE), and Post-hoc Explainability (PHE) [9].

Interpretable Agents (IA) are inherently designed to be
easily understood by humans, relying on rule-based or linear
models. However, this simplicity often comes at the cost of
performance. Intrinsic Explainability (IE) focuses on enhanc-
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ing explainability by modifying the RL agent or its model,
such as reward and transition functions, as part of its design.
Post-hoc Explainability (PHE) generates explanations for the
decisions of pre-trained models through external techniques
without altering their internal structure.

Among these approaches, PHE offers high performance
despite its limited inherent explainability, which makes it
well-suited for smart grid applications where performance is
a priority. Since it operates after model training, PHE can
also be used to analyse pre-existing models. Methods like
Local Interpretable Model-agnostic Explanations (LIME) and
SHapley Additive exPlanations (SHAP) are commonly used,
with LIME offering local insights and SHAP providing both
local and global explanations [10], [11]. This study uses LIME
for its simplicity and focus on specific decision analysis.

The main contributions of this work are as follows:

• A real-world case study in Ongole (India), utilizing actual
geographical and load data for microgrid design. The mi-
crogrid comprises wind turbines, solar panels, batteries,
and loads with different priority levels. Component sizing
is performed using HOMER Pro to achieve an optimal
design tailored to the location’s specific needs.

• Renewable generation simulated under the impact of the
Layla cyclone that occurred in this region in mid-May
2010 to capture the challenges posed by extreme weather
events.

• Use of the DRL Proximal Policy Optimization (PPO)
algorithm within an Actor-Critic framework, a well-
established and efficient method, enhances the resilience
of energy management of the microgrid.

• Application of the LIME method to explain specific
decisions made by the DRL agent. This strategy enhanced
transparency and built stakeholder trust in the system’s
operations.

By integrating these features, the study aims to present an
explainable approach to microgrid resilience management that
aligns with real-world scenarios and stakeholder expectations.

The structure of this article is as follows: Section II de-
scribes the microgrid modelling approach, the LIME method,
and the mathematical formulation used in the study. Section III
presents and analyses the simulation results. Finally, Section
IV concludes the study and outlines potential future research
directions.

II. MICROGRID MODELLING

We used HOMER Pro to size an appropriate microgrid for
the considered site, consisting of 140 kW of solar power,
80 kW of wind power, a 780 kWh battery, and a 52 kW
converter. Figure 1 illustrates the resilient energy management
of the microgrid using XDRL. The total load consumption and
the renewable power generated based on the weather data are
depicted in Figure 2.

The following section discusses modelling the RL environ-
ment.

A. Microgrid Environment Design

The design of the microgrid environment is crucial for the
DRL agent to interact effectively and learn optimal policies.
The environment encapsulates the physical and operational
characteristics of a microgrid, including battery storage, re-
newable energy generation, and load demands. The custom
environment is developed using the OpenAI Gymnasium
framework, which offers a standardised interface for DRL
agents. It allows libraries like Stable-Baselines3 to seamlessly
interact with the environment. The environment simulates
battery operations, renewable energy inputs, and load demands
over discrete time steps. Renewable energy generation and
load demands are deterministic, based on historical data, while
the initial State Of Charge (SOC) is randomized to introduce
variability in initial conditions.

The state space represents all possible states of the micro-
grid at any given time step. It includes variables essential for
the agent to make informed decisions. The state vector at time
step t is defined as:

st = [SOCt, L1,t, L2,t, L3,t, PRE,t, Pnet,t] . (1)

The SOC of the battery at time t, denoted as SOCt, is
constrained between SOCmin = 0.2 and SOCmax = 0.9 to
consider the safety and longevity of the battery. The load
demand at time t is represented by Li,t, where i = 1, 2, 3
corresponds to different priority levels. Essential load (L1,t)
holds the highest priority with a weight 3.5 times that of
business load (L2,t), which itself has 2 times higher priority
than agricultural load (L3,t), the lowest priority.

Renewable energy generation (PRE,t) at time t is determined
from historical weather data, and the net energy (Pnet,t) is
calculated as:

Pnet,t = PRE,t −
3∑

i=1

Li,t. (2)

The action space defines the set of all possible actions that
the agent can take at each time step. It is a continuous space
consisting of five variables, represented as:

at = [ach,t, adis,t, w1,t, w2,t, w3,t] , (3)

where ach,t and adis,t are the normalized charging and dis-
charging power actions, respectively, both constrained to the
range [−1, 1]. The variables wi,t, for i = 1, 2, 3, represent the
raw weights for distributing power among the three loads, and
each is also bounded within [−1, 1]. This action space enables
the agent to determine charging and discharging actions while
allocating power to different loads effectively.

The weights for power distribution among the loads are
normalised using a softmax function to ensure they sum to
one:

ŵi,t =
exp(wi,t)∑3
j=1 exp(wj,t)

, for i = 1, 2, 3. (4)



Fig. 1: Proposed XDRL Framework for Microgrid Resilience Energy Management.

Fig. 2: Total Load and Total Renewable Power Generation
Profiles Based on Weather Data.

The SOC of the battery is updated based on charging and
discharging actions while considering efficiency losses:

SOCt+1 = SOCt +
ηchPch,t − Pdis,t

ηdis

Emax
, (5)

subject to the constraint:

SOCmin ≤ SOCt+1 ≤ SOCmax, (6)

where ηch = 0.90 is the charging efficiency, ηdis = 0.95 is the
discharging efficiency, and Emax = 780 kWh is the maximum
battery capacity. The available capacities for charging and
discharging are defined as:

Eavail,ch,t = (SOCmax − SOCt)Emax, (7)

Eavail,dis,t = (SOCt − SOCmin)Emax. (8)

The charging and discharging powers are further constrained
by the available capacities:

Pch,t = min (Pch,t, Eavail,ch,t) , (9)

Pdis,t = min (Pdis,t, Eavail,dis,t) . (10)

Additionally, charging and discharging cannot occur simul-
taneously. Depending on the net energy, either charging or
discharging is permitted:{

Pdis,t = 0, if Pnet,t ≥ 0,

Pch,t = 0, if Pnet,t < 0.
(11)

The net power supply after battery operation (Ps,t) is
calculated as:

Ps,t = PRE,t + Pdis,t − Pch,t. (12)

This power is allocated to the loads based on the normalized
weights:

Ps,i,t = ŵi,tPs,t, for i = 1, 2, 3. (13)

The power imbalance for each load is given by:

Pimb,i,t = Ps,i,t − Li,t, for i = 1, 2, 3. (14)

Negative imbalances indicate shortages, which are critical
for resilience calculations. These shortages are defined as:

Psh,i,t = −min(0, Pimb,i,t), for i = 1, 2, 3. (15)

The reward function guides the agent towards actions that
enhance system resilience. At each time step, the reward rt
calculates the Resiliency Index (RI) reward.

The RI reward incentivizes the agent to minimize power
shortages, especially for high-priority loads. It is calculated
as:

rt =

(
1− 7Psh,1,t + 2Psh,2,t + 1Psh,3,t

7L1,t + 2L2,t + 1L3,t

)
. (16)

The cumulative reward for the entire episode is obtained by
summing over all time steps t from the start to the termination
of the episode:

Repisode =

T∑
t=1

rt. (17)



The overall RI for the episode is calculated as:

RI = 1− 7
∑T

t=1 Psh,1,t+2
∑T

t=1 Psh,2,t+1
∑T

t=1 Psh,3,t

7
∑T

t=1 L1,t+2
∑T

t=1 L2,t+1
∑T

t=1 L3,t
. (18)

The total reward for the episode is then adjusted by adding
the contributions from the overall RI at the termination of the
episode:

Rfinal = Repisode + RI. (19)

Finally, the total reward for the episode is normalized by
dividing it by the maximum possible total reward rmax:

Rnormalized
final =

Rfinal

rmax
. (20)

B. Conceptual Overview: PPO and LIME

PPO is a DRL algorithm designed to improve policy-
gradient methods by ensuring stable and efficient training.
PPO simplifies Trust Region Policy Optimization (TRPO) by
avoiding complex second-order optimization while maintain-
ing stable updates. The core idea of PPO is to use a clipped
surrogate objective that limits excessively large policy updates
[12]. The policy update is formulated as:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (21)

where rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio between the

new policy πθ and the old policy πθold , Ât is the advantage
function, and ϵ is the clipping parameter (e.g., 0.2). The agent
follows a policy πθ that determines its actions to optimize
rewards over time, with identifying the policy equivalent to
determining its parameters θ. This objective ensures that policy
updates remain within a trust region, avoiding performance
degradation from overly large updates.

The PPO algorithm alternates between collecting experience
through interaction with the environment and optimizing the
policy using gradient ascent. The combined objective includes
terms for the value function LVF and an entropy bonus Lentropy,
which encourage exploration. The overall loss is given by:

LPPO
t (θ, ϕ) = Et

[
LCLIP
t (θ)− c1L

VF
t (ϕ) + c2L

entropy
t (θ)

]
, (22)

where c1 and c2 are coefficients balancing the contributions
of each term.

LIME is a model-agnostic interpretability method that ex-
plains individual predictions by approximating the behaviour
of a complex model locally with a simpler, interpretable
surrogate model [10]. Given an input instance x, LIME gener-
ates perturbed samples around x, calculates the corresponding
outputs using the original model, and fits a simple model g to
these outputs. The optimization problem is:

ξ(x) = argmin
g∈G

(L(f, g, πx) + Ω(g)) , (23)

where L(f, g, πx) measures the fidelity of g in approximating
the original model f locally, πx is a proximity measure that
assigns higher weights to samples closer to x, and Ω(g) is a
complexity penalty ensuring the model has a low number of
parameters. The proximity function is defined as:

πx(z) = e

(
−D(x,z)2

σ2

)
, (24)

where D(x, z) is the distance between x and a perturbed
sample z, and σ controls the locality. LIME prioritizes samples
closer to the instance x, ensuring the explanation model g
focuses on local behavior.

In this work, LIME is applied to interpret the decisions
made by the actor in the PPO framework. Specifically, the
actor’s policy πθ(at|st), which determines the action prob-
abilities given a state, is analysed locally using LIME. By
generating explanations for the actor’s decisions, LIME helps
uncover the factors influencing the policy’s behavior. This
interpretability is crucial for understanding and debugging
reinforcement learning agents, especially in critical infrastruc-
tures like microgrid energy management. By combining PPO’s
robust policy optimization with LIME’s interpretability, this
approach balances performance and transparency, enabling the
DRL agent’s decisions to be both effective and explainable.

III. SIMULATION RESULTS

This section presents the simulation results. Figure 3 il-
lustrates the battery’s SOC, which indicates charging and
discharging patterns over time. Figure 4 shows the load supply

Fig. 3: SOC plot during the cyclone.

for the three prioritized loads. The total resilience index
achieved was 0.9736, a reasonable value for an event like a
cyclone. Additionally, the expected battery life was estimated
to be 15.11 years, aligning with the design parameters from
HOMER Pro. Additionally, the reward convergence curve is
shown in Figure 5, where it can be observed that the reward
stabilizes and converges after approximately 40,000 episodes
and approaches the oracle strategy. This article focuses on
analysing the factors driving the DRL agent’s decision-making
process for battery charging and discharging. In Figure 3,
three specific scenarios are shown in pink to represent distinct
operational modes on day 16: idle at hour 4, charging at
hour 11, and discharging at hour 21. The agent’s choices are
analysed in these scenarios to explore the factors influencing
its decisions under different scenarios.



(a)

(b)

(c)

Fig. 4: a) Essential Load, b) Business Load, and c) Agricultural
Load Demand, Supply, and Imbalances.

Fig. 5: Reward Convergence Over episodes.

The LIME results for the idle mode, presented in Figures
6b and 6a, indicate that the DRL actor’s decision to neither
charge nor discharge is driven by conflicting impacts of various
features. For the charging action (Figure 6a), all features
discourage charging, with significant negative contributions
from SOC, renewable generation, and Load 2, suggesting
an unfavourable condition for charging. In contrast, for the
discharging action (Figure 6b), SOC, renewable generation,
and net energy positively influence discharging, but these
are nearly counterbalanced by the high negative impact of

(a)

(b)

Fig. 6: LIME-based Explanations in IDLE Mode: a) Charging,
and b) Discharging Action.

Load 2, resulting in no clear encouragement for discharging.
This balance of influences leads the actor to select the idle
action. Additionally, Load 3 remains insignificant across all
scenarios due to its fixed nature and low priority, while Load 2
emerges as the most impactful feature, highlighting the actor’s
sensitivity to intermediate-priority loads in decision-making.

In the charging scenario, illustrated in Figures 7a and 7b, the
actor’s decision to charge is strongly influenced by multiple
encouraging features. In the charging action (Figure 7a), SOC
emerges as the most impactful positive factor, supported by
contributions from renewable generation, Load 2, and net
energy, all favouring the charging action. Conversely, in the
discharging action (Figure 7b), SOC, renewable generation,
and net energy significantly discourage discharging, while
Load 2 and Load 1 do not provide sufficient encouragement.
This leads the actor to select the charging action as the optimal
choice in this instance.

In the discharging scenario, shown in Figures 8a and 8b, the
actor’s decisions are shaped by contrasting feature impacts.
In the charging action (Figure 8a), factors such as renewable
generation, SOC, and net energy have significant negative
impacts, discouraging the actor from charging. However, in the
discharging action (Figure 8b), these same features contribute
positively, strongly encouraging discharging. This alignment
of positive impacts on discharging explains the actor’s choice
to discharge in this scenario.



(a)

(b)

Fig. 7: LIME-based Explanations in Charging Mode: a) Charg-
ing, and b) Discharging Action.

IV. CONCLUSION

This study introduced a transparent framework for microgrid
resilience management by combining PPO and LIME. The
microgrid was designed for the coastal city of Ongole in
India, aligning with local load and weather conditions under
the Layla cyclone scenario. The approach achieved a high
Resilience Index (0.9736) while maintaining an estimated
battery lifespan of over 15 years. LIME identified key factors
influencing decisions, including renewable generation, load
priorities, and battery SOC, enhancing stakeholder confidence
and trust in the agent’s charging and discharging actions.

Future research can explore alternative explainability meth-
ods (e.g., SHAP) for a broader perspective and global ex-
planations of the DRL agent’s decisions. Investigations into
multi-microgrid coordination, real-time constraints, and cy-
bersecurity considerations would further strengthen overall
resiliency. Additionally, incorporating economic factors and
battery life into the reward function could balance resilience
with profitability.
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