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What will you learn

These lessons will be mostly, obviously, maths :

I what it is - definite integrals

I why it works - physics and eng.

I how it works - practice !

I will try to explain in detail (maybe too much). Please let me
know if you do not understand something.
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The weight-lifter

He is pulling the weight over his head.
The associated potential energy is :

Ew = mgh

With g = 10m/s2,m = 200kg and
h = 2m, we have :

Ew = 4000J
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The girl

She is moving to the third floor The
associated potential energy is :

Ew = mgh

With g = 10m/s2,m = 50kg and
h = 10m, we have :

Ew = 5000J
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How to represent the energy ?

500 2 000

2

10

mg

h

The energy being E = mgh, it is actually the area under the curve.
It is convenient to compare similar efforts.
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Areas in engineering

Calculating an area is fundamental in engineering :

V1 V2

P isobaric transformation

W = P∆V
Volume

Pressure

The area of the path in the Pressure-Volume space is the Work done

In the following, we will see how to calculate the area under a
curve, and the underlying mathematics.
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Areas in engineering

Calculating an area is fundamental in engineering :

L’Oceanografic (Valencia, Spain), Gabaldon/Wikimedia Commons
How much paint to paint a roof

In the following, we will see how to calculate the area under a
curve, and the underlying mathematics.

5 / 53
Integration

N

www.gueniat.fr

www.gueniat.fr


Introduction A bit of physics Area under the curve Fundamental theorems of calculus applications annex

main illustration piecewise constant functions definite integral continuous function an horrible illustration

Areas in engineering

Calculating an area is fundamental in engineering :

NASA
calculating the center of mass (in 2D)

In the following, we will see how to calculate the area under a
curve, and the underlying mathematics.
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Areas in engineering

Calculating an area is fundamental in engineering :

Many more subject are related to similar notions, for instance cal-
culating volumes, the average of a complex function, etc.

In the following, we will see how to calculate the area under a
curve, and the underlying mathematics.
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Riemann

” The greatest strategy is doomed if it’s implemented badly. ”
Riemann
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Area under the curve
Let’s approximate the area under a curve (f (x) = x2 + x + 1) and
the axis, between 0 and 1 :

−0.5 0.5 1 1.5

1

2

3

4

x

y

A way to do so is to add some small rectangles, with areas

A1 = f (0.0)× 1

5
.
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Area under the curve
Let’s approximate the area under a curve (f (x) = x2 + x + 1) and
the axis, between 0 and 1 :

−0.5 0.5 1 1.5

1

2

3

4

δx

f (x) x

y

A way to do so is to add some small rectangles, with areas

A1 = f (0.0)× 1

5
.
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Area under the curve
Let’s approximate the area under a curve (f (x) = x2 + x + 1) and
the axis, between 0 and 1 :

−0.5 0.5 1 1.5

1

2

3

4

δx

f (x)
x

y

A way to do so is to add some small rectangles, with areas

A2 = f (0.2)× 1

5
.
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Area under the curve
Let’s approximate the area under a curve (f (x) = x2 + x + 1) and
the axis, between 0 and 1 :

−0.5 0.5 1 1.5

1

2

3

4

δx

f (x)
x

y

A way to do so is to add some small rectangles, with areas

A3 = f (0.4)× 1

5
.
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Area under the curve
Let’s approximate the area under a curve (f (x) = x2 + x + 1) and
the axis, between 0 and 1 :

−0.5 0.5 1 1.5

1

2

3

4

δx

f (x)

x

y

A way to do so is to add some small rectangles, with areas

A4 = f (0.6)× 1

5
.
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Area under the curve
Let’s approximate the area under a curve (f (x) = x2 + x + 1) and
the axis, between 0 and 1 :

−0.5 0.5 1 1.5

1

2

3

4

δx

f (x)

x

y

A way to do so is to add some small rectangles, with areas

A5 = f (0.8)× 1

5
.
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Details on the rectangles
What is the area Ai of the ith rectangle ?

area of a rectangle = width× height

I width of Ai :

Each of them have a width of δx =
1− 0

n
, where

1. n is the number of rectangles (5 in the previous figure)
2. 1 and 0 from ”1-0” are the right and left limits of the area

If the rectangle starts in xi and ends in xi+1, then we have
δx = xi+1 − xi
We can rewrite it as xi = (i − 1)δx

I height of Ai :
the height is f (xi ),

and its area is hence
Ai = f (xi )× δx
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Approximation of the Area A
We have approximated the area by using and summing tiny
rectangles.

The full area A is roughly the sum of the Ai :

A ≈
n∑

i=1

Ai

−0.5 0.5 1 1.5

1

2

3

4

x

y
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How does n affect the approximation ?

n=5 n=10 n=20

−0.5 0.5 1 1.5

1

2

3

4

x

y

−0.5 0.5 1 1.5

1

2

3

4

x

y

−0.5 0.5 1 1.5

1

2

3

4

x

y

A−
N∑
i
Ai

A = 11%
A−

N∑
i
Ai

A = 5%
A−

N∑
i
Ai

A = 2%
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from n = 10 to n = 107

101 102 103 104 105 106 107
10−9

10−5

10−1

n

A
−

n ∑ i
A

i

A
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A conclusion

It seems that, when n goes to ∞, the sum of the rectangles
converges to the area under the curve A !

Or, rewritten in a mathematical language :

A = lim
n→∞

n∑
i=1

f
(
(i − 1)δx

)
δx
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A conclusion

It seems that, when n goes to ∞, the sum of the rectangles
converges to the area under the curve A !
Or, rewritten in a mathematical language :

A = lim
n→∞

n∑
i=1

f
(
(i − 1)δx

)
δx

Remember :

I f
(
(i − 1)δx

)
is the height in the ith point

I δx =
1

n
is the width

I and hence the product is the area Ai
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A conclusion

It seems that, when n goes to ∞, the sum of the rectangles
converges to the area under the curve A !
Or, rewritten in a mathematical language :

A = lim
n→∞

n∑
i=1

f
(
(i − 1)δx

)
δx

In the next slides, we will just generalize and give more strength to
this idea !

12 / 53
Integration

N

www.gueniat.fr

www.gueniat.fr


Introduction A bit of physics Area under the curve Fundamental theorems of calculus applications annex

main illustration piecewise constant functions definite integral continuous function an horrible illustration

Considerations

In the following, we are interested in functions that are defined on
[a, b] ∈ R.
a and b can be any number, and we suppose that a < b.

a b

f(x)

x

y
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Set of points

Let’s have a set of points {xi}1≤i≤n, such as :

I x1 = a

I xi+1 > xi
I xn = b

We are just dividing [a, b] !
The set of point in called a partition of [a, b] of size n.

x 1
=
a

x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9
=
b

x
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Piecewise constant function

Let’s consider functions that are constant on each of the intervals
[xi , xi+1] of a partition. It means, that if x ∈ [xi , xi+1],

f (x) = fi

a x 2 x 3 x 4 x 5 x 6 x 7 x 8 b

f1

f2
f3

f4

f5

f6

f7

f8

x

y
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Piecewise constant function

Let’s consider functions that are constant on each of the intervals
[xi , xi+1] of a partition. It means, that if x ∈ [xi , xi+1],

f (x) = fi

a x 2 x 3 x 4 x 5 x 6 x 7 x 8 b

f1
f2

f3

f4 f5

f6

f7 f8
x

y
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Area under the curve

We can now define what is the area under a piecewise function.
Let’s say it is negative if fi < 0.

f1 > 0

f2 > 0

f3 > 0

f4 < 0

f5 < 0

f6 < 0

f7 > 0
f8 > 0

x

y

The area under piecewise function is then :

A =
n∑

i=1

fi × (xi+1 − xi )
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Area under the curve

We can now define what is the area under a piecewise function.
Let’s say it is negative if fi < 0.

f1 > 0

1

f2 > 0

1.5
f3 > 0

0.5

f4 < 0

−1

f5 < 0

−1.5
f6 < 0

−0.3

f7 > 0

1.2

f8 > 0

1 x

y

The area under piecewise function is then :

if xi+1 − x1 = 1

A = 1 + 1.5 + 0.5−1− 1.5− 0.3+1.2 + 1 = 2.4
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Integral for piecewise functions

We actually define the integral for piecewise function as the area
under the curve :

b∫
a
f (x)dx =

n∑
i=1

fi × (xi+1 − xi )

This is the Cauchy-Riemann integral of a piecewise function. It is
also the definite integral of a function between a and b.
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Why definite ?

I We have seen indefinite integrals :∫
f (x), for instance

∫
sin(x)dx = − cos(x) + C

It is a function. Also, there is no number around the
∫
sign.

I We have now definite integrals :

b∫
a

f (x)dx

They are definite between two points, a and b. It is associated
with a value. As long as a and b are known, it is not a
function.

Let’s see why we are using the same sign
∫
!
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f (x), for instance

∫
sin(x)dx = − cos(x) + C

It is a function. Also, there is no number around the
∫
sign.

I We have now definite integrals :

b∫
a

f (x)dx

They are definite between two points, a and b. It is associated
with a value. As long as a and b are known, it is not a
function.

Let’s see why we are using the same sign
∫
!

18 / 53
Integration

N

www.gueniat.fr

www.gueniat.fr


Introduction A bit of physics Area under the curve Fundamental theorems of calculus applications annex

main illustration piecewise constant functions definite integral continuous function an horrible illustration

Approximation of a continuous function

The previous integral definition is only for a piecewise constant
function.
It can easily be extended to continuous functions : by following the
spirit of first example !

19 / 53
Integration

N

www.gueniat.fr

www.gueniat.fr


Introduction A bit of physics Area under the curve Fundamental theorems of calculus applications annex

main illustration piecewise constant functions definite integral continuous function an horrible illustration

Approximation of a continuous function

First, we approximate a continuous function with a piecewise
constant function.

I chose n and construct the partition σn = {x1, . . . , xn} with :
I x1 = a, xn = b

I δx =
b − a

n
I xi = x1 + (i − 1)δx

I approximate a continuous function f with a piecewise
constant function f̄n, on a partition σn, with f̄n(x) = f (xi ) if
x ∈ [xi , xi+1].
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Approximation of a continuous function : illustration

n = 10

x

y

Note how fi = f (xi ).
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Approximation of a continuous function : illustration

n = 20

x

y

Note how fi = f (xi ).
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Approximation of a continuous function : illustration

n = 50

x

y

Note how fi = f (xi ).
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Approximation of a continuous function : illustration

n = 100

x

y

Note how fi = f (xi ).
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Going to the limit

Now that we have the approximation f̄n of f :

I estimate the integral of the piecewise function

Īn =
b∫
a
f̄n(x)dx =

n∑
i=1

fiδx .

I The integral I of f is the limit of In when n → ∞ :

I = lim
n→∞

n∑
i=1

fiδx

I is noted
b∫
a
f (x)dx and is called the integral of f on [a, b].

the integral of f on [a, b] is :
b∫
a

f (x)dx = lim
n→∞

n∑
i=1

f
(
a + i(a − b)/n

)
δx

It is the sum of small elements of width dx .
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A real problem in architecture

Say we want to find the surface of glass needed to cover the front
of the Oceanografic, a gigantic oceanonarium :

L’Oceanografic (Valencia, Spain), Gabaldon/Wikimedia Commons
The front is a parabola, the surface is hence related to the integral
of a quadratic equation, i.e., f (x) = x2.
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Integrate
b∫
a

x2dx

Let’s integrate the function f (x) = x2 between a and b.
It should not be that long, right ?

First, let’s use the formula defining the integral :
b∫
a
f (x)dx = lim

n→∞

n∑
i=1

f
(
a+ i(a− b)/n

)
δx . With f (x) = x2, we have :

b∫
a

x2dx = lim
n→∞

{
n∑

i=1

[
a+ i

(
b − a

n

)]2
×

(
b − a

n

)}
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Integrate
b∫
a

x2dx

Maybe, it will not be that easy.

photo by Mathew Schwartz
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Integrate
b∫
a

x2dx

Maybe, it will not be that easy.
Let’s continue ?

b∫
a
x2dx = lim

n→∞

{
n∑

i=1

[
a2 + 2ai

b − a

n
+ i2

(
b − a

n

)2
]
×

b − a

n

}

= lim
n→∞

{
n∑

i=1

[
a2

b − a

n
+ 2ai

(
b − a

n

)2

+ i2
(
b − a

n

)3
]}

= lim
n→∞

{
a2 (b − a) + 2a

(
b − a

n

)2 [ n∑
i=1

i

]
+

(
b − a

n

)3 [ n∑
i=1

i2
]}

= lim
n→∞

{
a2 (b − a) + 2a

(
b − a

n

)2

I1 +

(
b − a

n

)3

I2

}

with

I1 =
n∑

i=1

i , I2 =
n∑

i=1

i2
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main illustration piecewise constant functions definite integral continuous function an horrible illustration

Integrate
b∫
a

x2dx

Maybe, it will not be that easy.
Urgh.

photo by Marc Lopez
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main illustration piecewise constant functions definite integral continuous function an horrible illustration

Integrate
b∫
a

x2dx

Or, we have

I1 =
n∑

i=1
i

=
n(n + 1)

2

and

I2 =
n∑

i=1
i2

=
n(n + 1)(2n + 1)

6
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main illustration piecewise constant functions definite integral continuous function an horrible illustration

Integrate
b∫
a

x2dx

We can now replace I1 and I2

b∫
a
x2dx = lim

n→∞

{
a2 (b − a) + 2a

(
b − a

n

)2

I1 +

(
b − a

n

)3

I2

}

= lim
n→∞

{
a2 (b − a) + �2a

(
b − a

n

)2 n(n + 1)

�2

+

(
b − a

n

)3 n(n + 1)(2n + 1)

6

}
= lim

n→∞

{
a2 (b − a) + a (b − a)2

n(n + 1)

n2

+
(b − a)3

6

n(n + 1)(2n + 1)

n3

}

Or, the limit of a sum is the sum of the limits.
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main illustration piecewise constant functions definite integral continuous function an horrible illustration

Integrate
b∫
a

x2dx

Breaking down the expression :

lim
n→∞

a2 (b − a) = a2 (b − a)

lim
n→∞

a (b − a)2
n(n + 1)

n2
= a (b − a)2

lim
n→∞

(b − a)3

6

n(n + 1)(2n + 1)

n3
=

(b − a)3

3
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main illustration piecewise constant functions definite integral continuous function an horrible illustration

Integrate
b∫
a

x2dx

So, we have :

b∫
a
x2dx = a2 (b − a) + a (b − a)2 +

(b − a)3

3

= a2b − a3 + a
(
b2 − 2ab + a2

)
+

b3 − 3ab2 + 3ab − a3

3

= a2b −�a3 + ab2 − 2a2b +�a3 +
b3 − 3ab2 + 3ab − a3

3

=
��3ab2 −��3a2b + b3 −��3ab2 +��3ab − a3

3

and, finally !
b∫

a

x2dx =
1

3
b3 −

1

3
a3
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Chasles’ relationship reversal linearity first theorem

Why even bothering ?

That was... not fun.

For that reason, there is a few theorems that will link indefinite
integral, definite integral and derivation.
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Chasles’ relationship reversal linearity first theorem

Additive property
Let’s have c ∈ [a, b].
Because the integral is the area under the curve, and the sum of
the areas of two adjacent regions [a, c] and [c , b] is equal to the
area of both regions combined [a, b], we have

c∫
a

f (x)dx +

b∫
c

f (x)dx =

b∫
a

f (x)dx

a c b

x

y

31 / 53
Integration

N

www.gueniat.fr

www.gueniat.fr


Introduction A bit of physics Area under the curve Fundamental theorems of calculus applications annex

Chasles’ relationship reversal linearity first theorem

Reversal limits property

Also, integration in a backward direction gives the opposite of the
forward integration :

a∫
b

f (x)dx = −
b∫

a

f (x)dx

The proof comes from the Riemann sum :

b∫
a

f (x)dx = lim
n→∞

n∑
i=1

fiδx

If a and b are switched, then dx is xi − xi+1. Changing the sign
gives the result. Et voilà !
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Chasles’ relationship reversal linearity first theorem

Linearity property

From the Riemann sum, we have :

a∫
b

αf1(x) + βf2(x)dx = α

b∫
a

f1(x)dx + β

b∫
a

f2(x)dx
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Chasles’ relationship reversal linearity first theorem

First theorem : define F

Let’s have x in [a, b].
Then, we define a function F as the integral of f between a and x :

F (x) =

x∫
a

f (t)dt

ax

x

y

F (x) is the blue area.
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Chasles’ relationship reversal linearity first theorem

First fundamental theorem of calculus

We now can express the first theorem of calculus :

If F (x) =
x∫
a

f (t)dt

then : F ′(x) = f (x)
F is an antiderivative of f .
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Chasles’ relationship reversal linearity first theorem

First theorem : sketch of proof

Let’s have h :

F (x + h)− F (x) =
x+h∫
a

f (t)dt −
x∫
a
f (t)dt

=
x+h∫
x

f (t)dt

using the previous approximations with piecewise constant,
x+h∫
x

f (t)dt is roughly

f (x)× h. It means that

lim
h→0

F (x + h)− F (x)

h
= f (x)

Et voilà !
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Chasles’ relationship reversal linearity first theorem

Second fundamental theorem of calculus

If F is an antiderivative of f then :
b∫
a

f (t)dt = F (b)− F (a)
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Chasles’ relationship reversal linearity first theorem

Second fundamental theorem of calculus

If F is an antiderivative of f then :
b∫
a
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Chasles’ relationship reversal linearity first theorem

Second theorem : proof

Let’s have G(x) =
∫ x
a f (x)dx an antiderivative of f . We know that (F − G)′ = 0,

hence G = F + C where C is a constant. With x = a, we have :

a∫
a

f (x)dx = G(a) = F (a) + C

Or
a∫
a
(f (x)dx = 0, which means C = −F (a). finally,

b∫
a
f (x)dx = G(b) = F (b)− F (a).

Et voilà !
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Chasles’ relationship reversal linearity first theorem

Why these theorems are so important ?

I The definition allows us to break down calculations in small
parts
the area is a sum of small areas

I It links definite integrals and indefinite integrals !
F (x) =

x∫
a
f (x)dx is an antiderivative of f

I If any antiderivative F so F ′ = f is known, then it is possible
to calculate

∫ x
a f (t)dt for any x .

it is F (x) − F (a)

I It has so many applications. Let’s see !
Mainly because of the first point !
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Chasles’ relationship reversal linearity first theorem

Cavalieri

” An area is considered as constituted by an indefinite numbers of
parallel segments. ”

Early 17th-century Italian mathematician Bonaventura Cavalieri.
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

What we have seen

It is very valid to consider a small element dV of a problem and
then to add all these elements, as V =

∫
dV to identify the final

value.
For instance, for an area, we have considered small areas and we
have summed them to get the entire area :

−0.5 0.5 1 1.5

1

2

3

4

x

y
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the perimeter to the disk

r

The perimeter of the circle is 2πr .
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the perimeter to the disk

r+dr

r

We consider a second circle of radius r + dr .
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the perimeter to the disk

r+dr

r

If dr is small, the area δA is 2πrdr .

42 / 53
Integration

N

www.gueniat.fr

www.gueniat.fr


Introduction A bit of physics Area under the curve Fundamental theorems of calculus applications annex

Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the perimeter to the disk

We can sum up all the δA to get the area.
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the perimeter to the disk

We can sum up all the δA to get the area.
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the perimeter to the disk

What is the perimeter of a circle of diameter r ? P = 2πr Then,
how to calculate the surface of a disk ? It is the sum of small bands
of width dr :

S =

∫ R

0
2πrdr

And the application gives

S = [πr2]R0 = πR2
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the disk to the volume

r

A sphere, of radius R, can be
approximated stacked disks.
color, red is of radius r) of height
dh.
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the disk to the volume

dh

A sphere, of radius R, can be
approximated stacked disks.
color, red is of radius r) of
height dh.
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the disk to the volume

How to calculate the volume of a sphere ?

Half the sphere is a sum of small disks of width dh :

dV = πr2dh,
1

2
V =

∫ R

0
πr2dh

how is r related to h ? We have R2 = r2 + h2, and hence
r2 = R2 − h2.
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

From the disk to the volume

Combining both r=R2 − h2 and
1

2
V =

∫ R
0 πr2dh leads to :

1

2
V =

∫ R
0 π(R2 − h2)dh

= π
∫ R
0 R2dh − π

∫ R
0 h2dh

= π[R2h]R0 − π[
1

3
h3]30

= πR3 − π
1

3
R3

= π
2

3
R3

and hence the celebrated V =
4

3
πR3 !
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

What if it was a cylinder instead ?
The volume is still stacked pancakes. But now, the radius does not
depend on the height.
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

What if it was a cylinder instead ?
The volume is still stacked pancakes. But now, the radius does not
depend on the height.
It means that

V =
∫ H
0 πR2dh

= πR2
∫ H
0 dh

= πR2[h]H0
= πR2H

and hence the celebrated V = πR2H !
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

Work done by on a piston

What is the work done by a piston ? Let’s think first of a piston.
The element of work dW when the piston moves from dx is

dW = Fdx

What is F ? It comes from the pressure the gas exerces on the
piston. If the piston has an area A, and if the pressure is p, then

dW = pAdx

48 / 53
Integration

N

www.gueniat.fr

www.gueniat.fr


Introduction A bit of physics Area under the curve Fundamental theorems of calculus applications annex

Infinitesimal calculus areas and volumes Gas compression Hoop stress

Work done in general

Adx is the variation in volume in the piston chamber ! It is,
practically, da. And hence, we can generalize to :

dW = pdv

. It means that the work from a gas, when the volume changes

from V1 to V2 is :

W =

∫ V2

V1

pdv
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

Work done : case of a perfect gas

We now need to replace p with a function of v .
Let’s suppose that we have the law of perfect gas, for an isotherm

compression : pv = c where c is a constant. It means that p =
c

v
,

and the equation from work becomes :

W =

∫ V2

V1

c

v
dv

The work is then :
W = [c ln v ]V2

v1

and, finally :

W = c ln
V2

V1
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Infinitesimal calculus areas and volumes Gas compression Hoop stress

Cylinder stress

Rp = cste drP + dpR = 0

Stress P
P1∫
P0

dP

a− P
= 2

r1∫
r0

dr

r
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Sir Michel Atiyah

” I have a proof of the Riemann hypothesis ! ”
2018 Heidelberg Laureate Forum (HLF)
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Does Riemann’s name sounds familiar ?

A few days ago (late September 2018), Atiyah gave a lecture in
Germany in which he stated he proved the Riemann hypothesis.

Roughly speaking, the Riemann hypothesis explains how prime
number are distributed (nothing to do with integrals...).
It is utterly important for cryptography and hence for the safety of
our phones, emails and bank accounts !
Also, the one who will solve this hypothesis will win 1 million $ !

Though Atiyah is supposed to be a ”math wizard” (quote from
John Allen Paulos, a professor of mathematics at Temple
University in Philadelphia, USA), there is serious doubts about the
proof.
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