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I. Introduction

As always, please free to refer to the book [Croft and Davidson, 2016] for details.

I Introduction

This unit covers indices and their laws, and logarithms and their uses in solving some types of equations.

II Indices, powers and roots

D
ef

. INDICES: Indices are powers or exponents. Note that the singular of indices is index. A
power, or an index, is used to write a product of a number by itself a certain number of time
in a very compact way.

For example 34 is read 3 raised to the power of 4. It correponds to 3 multiplied by itself 4 times:

34 = 3×3×3×3︸ ︷︷ ︸
4 times

II a) on a calculator

There should be a key marked x y or y x . This is the key used to raise a number to a power.
For instance, 34 can be calculated by pressing the following key sequence:

Ô 3

Ô x y

Ô 4

The answer you should get is 81.

Exercise 1.

For the following exercises, try to use first a pen and paper, and then validate it with the calculator.

721.1 331.2 241.3 431.4

131.5 1031.6 341.7 031.8

261.9 441.10 621.11 531.12

271.13 631.14 281.15 731.16

1041.17 541.18 451.19 291.20

041.21 921.22 641.23 831.24

821.25 351.26 551.27 931.28

1201.29 361.30 1221.31 1231.32

2101.33 461.34 3021.35 841.36

2111.37 2031.38 2121.39
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II. Indices, powers and roots

Exercise 2.

Rewrite the following replacing a or n with a positive whole number

32 = 2n2.1 25 = a22.2 1 = a32.3 27 = 3n2.4

16 = a42.5 125 = a32.6 64 = 8n2.7 64 = 4n2.8

64 = 2n2.9 81 = 9n2.10 81 = 3n2.11 0 = a102.12

512 = a92.13 216 = 6n2.14 1000 = 10n2.15 1296 = a42.16

625 = 5n2.17 1024 = a102.18 729 = 9n2.19 1 = a152.20

729 = 9n2.21 1024 = 4n2.22 343 = 7n2.23 243 = a52.24

256 = a82.25 256 = a42.26 400 = a22.27 2048 = 2n2.28

II b) Square Roots

D
ef

. SQUARE ROOT AND
p : A square root

p
x of a number x is a value that can be multiplied by

itself to give the original number
p

x ×p
x = x.

Another notation for
p

x is x
1
2 ; in other words, the square root of x is x to the power of a

half.

For instance, the square root of 16 is 4, as 4×4 = 16.
But (−4)× (−4) = 16! It means that −4 is also a square root of 16.
Computing the square root is usually a hard task. This is why it is done by using a calculator. The

square root is found by using the p key. When we use the p symbol, the calculator refer to a positive

number. Hence,
p

16 = 4.
It is rarely an easy number to find:

p
20 = 4.472 (to 3 decimal places).

T
ip

p−4 does not exist for you calculator: you will get error.
You can not calculate the square root of a negative number. There is not a number that you
can multiply by itself to get −4, both 2×2 and −2×−2 =+4.

T
ip

Every time you find the square root of a number there are always two answers (although
one is sometimes over looked).

p
16 = 4, but we also have −4×−4 = 16. Every square root

has a positive and a negative answer but calculators always give only the positive answer.
Strictly speaking

p
4 is 2 and −2 which is sometimes written ±2 (plus or minus 2).

There are a number of different ways that this can be calculated on your calculator.

Ô use the p key

Ô use the x
1
y key. For instance, for

p
16, you press 16, x

1
y , 2 and =. The 2 comes from

p
n = n

1
2

note that with some calculators, the order might be reversed, i.e. the 2 might be before the x
1
y

Ô use the x y key, and use the fraction key (ab/c) for the 1
2 . For instance, for

p
16, you press 16, x y ,

1, ab/c, 2 and =
Ô use the x y key, and put the half into brackets. For instance, for

p
16, you press 16, x y , (1÷2) and =
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II. Indices, powers and roots

Exercise 3.

Evaluate the following, give your answer to 3 significant figures where appropriate.
p

43.1
p

93.2
p

203.3
p

1003.4
p

10003.5
p

643.6
p

253.7
p

103.8
p

23.9
p

13.10
p

03.11
p−13.12

p
53.13

p
503.14

p
603.15

G
oi

ng
fu

rt
he

r

You do not have a calculator ? No big deal.
You can have a decent approximation of a square root by following this algorithm.

1. start with a guess
let’s guess 4 is the square root of 20

2. divide by the guess
20/4 = 5

3. add to the guess
4+5 = 9

4. then divide the result by two
9/2 = 4.5

5. Use it as the new guess, and start at 2)

For instance, calculating
p

20 = 4.472:

Ô first guess is 4, which leads to 4.5

Ô The guess is 4.5, which leads to 4.722

Ô the guess is 4.722, which leads to 4.479
It starts to be really close !

Ô the guess is 4.492, which leads to 4.472
As close as precision used !

II c) More Roots

The cube root of x is x to the power of one third and the fourth root of x is x raised to the power of one
quarter and so on.

D
ef

.

ROOTS n
p

x: Roots can be generalized. The nth root of x, noted n
p

x or x
1
n , is a number that

is equal to x when multiplied n times with itself:

n
p

x × n
p

x × . . .× n
p

x︸ ︷︷ ︸
n times

= x

For instance, 3p8 = 2, as 2×2×2 = 8.

As seen in Sec. II b), square roots can be found using the square root key. Most calculators have a
cube root key 3

p , but higher roots must be found using one of the methods described above:

Ô use the x
1
y key. For instance, for 4p16, you press 16, x

1
y , 4 and =. The n comes from n

p
x = x

1
n

note that with some calculators, the order might be reversed, i.e. the n might be before the x
1
y
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III. Laws of Indices

Ô use the x y key, and use the fraction key (ab/c) for the 1
n . For instance, for 4p16, you press 16, x y ,

1, ab/c, 4 and =
Ô use the x y key, and put the half into brackets. For instance, for 4p16, you press 16, x y , (1÷4) and =

For instance, you should find that, up to the 5 significant figures:

Ô 3p16 = 16
1
3 = 2.5198.

Ô 5p20 = 20
1
5 = 1.8206.

Exercise 4.

Evaluate the following:

3p84.1
p

94.2 4p164.3
p

14.4 3p274.5

p
364.6

p
04.7 6p644.8

p
814.9 4p814.10

7p1284.11 3p14.12 4p2164.13 6p7294.14 np14.15

4p12964.16 3p17284.17 11p20484.18 np04.19 3p80004.20

Exercise 5.

Rewrite the following replacing a or n with a positive integer

8 =p
a5.1 4 = np645.2 2 = 5

p
a5.3 7 = np3435.4

4 = np2565.5 3 = 5
p

a5.6 1 = 7
p

a5.7 4 = np10245.8

11 =p
a5.9 0 = 5

p
a5.10 100 =p

a5.11 27 =p
a5.12

36 =p
a5.13 8 = np5125.14 1 = 50

p
a5.15 9 = np7295.16

32 =p
a5.17 0 = 50

p
a5.18 8 = np40965.19 16 = 3

p
a5.20

III Laws of Indices

To manipulate expressions involving indices, we use rules known as the laws of indices.

T
ip The laws should be used precisely as they are given. Do not be tempted to make up varia-

tions of your own!

D
ef

. ZEROTH RULE : Anything to the power of 0 is equal to one.

a0 = 1
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III. Laws of Indices
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Anything to the power of 0 is one. But also, zero to the power of anything is zero. (0m = 0).
But what happens exactly when we try to have 00 ?
Let’s use a calculator for looking at how ab behave when we have a and b are going close to
zero. Let’s start with a = 1, b = 1, and let’s decrease a and b in the next table.

a b ab

1.0 1.0 1.0
0.9 0.9 0.90953
0.8 0.8 0.83651
0.7 0.7 0.77905
0.6 0.6 0.73602
0.5 0.5 0.70710
0.4 0.4 0.69314

It seems that it is going to zero. So, is 00 = 0 ?
Let’s continue closer to zero in the next table.

a b ab

0.1 0.1 0.79432
0.01 0.01 0.95499
0.001 0.001 0.99311
0.0001 0.0001 0.99907

It now seems that it is going to 1! So, finally, do we have 00 = 1? But, how is something times
zero not equal to zero ?!
The statement 00 is ambiguous, and has actually been long debated in mathematics. This
is mostly a matter of definition. It is considered to be an "indeterminate form,", but we will
admit that 00 = 1, because:

Ô it seems to be the case in the previous table

Ô it will be very useful in many cases

P
ro

p.

PRODUCT RULE OF INDICES : When expressions with the same base are multiplied, the
indices are added.

am ×an = am+n

It is easy to understand why:

am+n = a ×a × . . .×a︸ ︷︷ ︸
m+n times

= a ×a × . . .×a︸ ︷︷ ︸
m times

×a ×a × . . .×a︸ ︷︷ ︸
n times

or:

Ô am = a ×a × . . .×a︸ ︷︷ ︸
m times

Ô an = a ×a × . . .×a︸ ︷︷ ︸
n times

Hence, am+n = am ×an .
Et voilà !
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III. Laws of Indices

For instance
103 ×104 = (10×10×10)× (10×10×10×10) = 107

P
ro

p.

NEGATIVE EXPONENT RULE : if you move a term from the denominator to the numerator
you must change the sign of the power.

1

am = a−m

Let’s chose n so an = 1/am . We have

am 1

am = am

am

= a0

= am ×an

= am+n

It means that am+n = a0 and hence m +n = 0. Consequently, n =−m and

an = a−m = 1

am

Et voilà !

For instance:
1

103 = 10−3

The same applies if you move from the numerator to the denominator:

102 = 1

10−2
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III. Laws of Indices

P
ro

p.

QUOTIENT RULE OF INDICES : When expressions with the same base are divided, the indices
are substracted.

am/an = am−n

It is easy to understand why. am/an is:

am

an =
m times︷ ︸︸ ︷

a ×a ×a × . . .×a

a ×a × . . .×a︸ ︷︷ ︸
n times

Let’ s break up the demonstration in three cases:

1. Let’ s suppose that m > n, then it means that we can cancel out some terms on the
denominator:

am

an = am

an =

m times︷ ︸︸ ︷
�a × �a × . . .× �a︸ ︷︷ ︸

n times

. . . a ×a

�a × �a × . . .× �a

Which leads to:
am

an = a ×a × . . .×a︸ ︷︷ ︸
m times with n cancelled, hence m-n times !

2. And what if n > m? Then it means that we can cancel out some terms on the numer-
ator:

am

an = am

an = �a × �a × . . .× �a
n times︷ ︸︸ ︷

�a × �a × . . .× �a︸ ︷︷ ︸
m times

. . . a ×a

Which leads to:
am

an = 1

a ×a × . . .×a︸ ︷︷ ︸
n times with m cancelled, hence n-m times !

or, 1/bp = b−p , hence the result.

3. if m = n, then am/an = 1 which is a0, and hence am−n .

Et voilà !

For instance
104

103 = 10×10×10×10

10×10×10

= ��10×��10×��10×10

��10×��10×��10
= 10
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III. Laws of Indices

P
ro

p.

POWER LAW OF INDICES : If you raise one power to another power you multiply the powers
together.

(am)n = am×n

(am)n =
n times︷ ︸︸ ︷

a ×a × . . .×a︸ ︷︷ ︸
m times

× . . .×a ×a × . . .×a︸ ︷︷ ︸
m times

= a ×a × . . .×a︸ ︷︷ ︸
m×ntimes

Et voilà !

P
ro

p.

FRACTIONAL RULE OF INDICES : The denominator of the fraction is the root of the number
or letter, and the numerator of the fraction is the power to raise the answer to:

np
am = a

m
n

Let’s say that p is such npam = ap .
We have, when raising to n:

( npam)n = (ap )n

= apn

Or, ( npam)n = am . It means that pn = m, and hence that p = m

n
Et voilà !

Let’s look at
3p

272.
This can be, practically, calculated a number of ways:

Ô 27 raised to the power of two thirds using a variety of methods as in Section II a).

Ô 27 squared then cube rooted

Ô 27 cube rooted then squared
3p

272 = 272/3 = (271/3)2 = 32 = 9
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III. Laws of Indices
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Let’s simplify

b3 ×a4 b3

a4 × (a2b)2÷3

The first thing to do is to remove brackets:

(a2b)2÷3 = (a2b)
2
3

= a2× 2
3 ×b1× 2

3 Using the power law

= a
4
3 ×b

2
3

Then, we can regroup terms:

b3 ×��a4 b3

��a
4
×a

4
3 ×b

2
3 = 4b3 ×b3 ×b

2
3 ×a

4
3 regrouping by terms

= 4b3+3+ 2
3 ×a

4
3 simplifying using product rule

= 4b
20
3 ×a

4
3

Exercise 6.

Simplify the following

a4 ×a56.1 b3 ×b66.2 x ×x76.3 52 ×536.4

q6 ×q66.5 67 ×686.6 10x ×10x6.7 a3 ×a4 ×a56.8

p2 ÷p26.9 37 ÷336.10 r 10 ÷ r 46.11 68 ÷676.12

b20 ÷b106.13 kn ÷kn6.14 (p2)26.15 (q4)36.16

(M2)76.17 (x7)36.18 (w4)n6.19 (k6)46.20

a7 ×a−36.21 x−2 ×x−46.22 10−4 ×106.23 n0 ×n76.24

r 0.5 × r 0.56.25 a5 ×a−56.26 p3.5 ×p2.56.27 c1−x × c1−x6.28

3−2 ÷326.29 w ÷w0.56.30 x−2 ÷x−26.31 f 0 ÷ f 46.32

10−1 ÷1036.33 a−x ÷ax6.34 (x−2)−56.35 (p0.5)26.36

(10−1)56.37 (r 0.5)36.38 (v0)86.39 w (1−x)(1+x)6.40
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IV. Logarithm

Exercise 7.

Simplify the following

41/27.1 91/27.2 271/37.3 11/27.4

2431/57.5 01/27.6 641/27.7 641/37.8

641/67.9 1281/77.10 5121/37.11 43/27.12

322/57.13 82/37.14 274/37.15 13/77.16

1282/77.17 642/37.18 95/27.19 47/27.20

813/47.21 84/37.22 2563/87.23 10240.27.24

2430.67.25 2434/57.26 167/47.27 40965/127.28

(
1

2

)−3

7.29
1

2−37.30
1

7−27.31

(
1

2

)−4

7.32

(0.125)−17.33 707.34
1

3−37.35

(
1

2

)−5

7.36

1

14−17.37
1

49−1/2
7.38

(
1

3

)−1

7.39

(
1

27

)−1/3

7.40

IV Logarithm

Logarithms (and exponential) have been developed and used by/for accountants, due to their nice
properties. Indeed, it is easy to add and substract quantities, but it is really hard to multiply or divide
quantities. Think of the difference between 571+483 vs 571×483.

G
oi
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The method of logarithms was publicly propounded by John Napier in 1614, in a book ti-
tled Mirifici Logarithmorum Canonis Descriptio (Description of the Wonderful Rule of Log-
arithms). The name Logarithm is the combination of two Greek roots, Logos (reason or
ratio) + artihmus (number). The ratio refers to the original method of constructing loga-
rithms by geometric sequences. The name was introduced by John Napier.
Pierre-Simon Laplace called logarithms an " admirable artifice which, by reducing to a few
days the labour of many months, doubles the life of the astronomer, and spares him the
errors and disgust inseparable from long calculations."
They were the main way of achieving hard computations, before the introduction of com-
puters and calculators.
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IV. Logarithm

Whilst logarithms are no longer used to multiply and divide, their use is not obsolete, they (and their
rules) are used to solve equations where the power is the unknown, e.g. 32 = 5x .

It is also widely use in data science.

D
ef

.

LOGARITHM: A logarithm is defined as the inverse of an index:

bx = y logb(y) = x

It holds as long as:

Ô y > 0

Ô b 6= 1

G
oi

ng
fu

rt
he

r We are going to use the abbreviation "log" and "Log" a lot in the following. But where does
it come from ?
According to Gordon Fisher, Log. (with a period and a capital "L") was first introduced by
Johannes Kepler (1571-1630) in 1624 in Chilias logarithmorum.
The abbreviation log. (without the capital letter, still with a period) was used a few years
later, by Bonaventura Cavalieri (1598-1647) in Directorium generale Vranometricum in
1632 (Cajori vol. 2, page 106).
Finally, the abbreviation that we use, log (without a period, lower case "l") appears in the
1647 edition of Clavis mathematicae by William Oughtred.

D
ef

. BASE: The log of a number to a base is the power to which the base must be raised to get
that number"
It means that the number b in logb is named the base of the logarithm.

For instance, if 10x = 4, then x = log10 4 and log10 is a logarithm in base 10.
There are two commonly used logs,

Ô logs to base 10 (log10)

Ô logs to base e (loge )
e is a special number (e ≈ 2.718281828).

Logarithm to base 10 is the "Log" key on your calculator. Logarithm to base e is the "ln" key. The
"ln" comes from the name of logarithm to base e: it is called Natural Logarithm (or Naperian logarithm),
after Napier the mathematician who discovered logarithms.
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IV. Logarithm
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Can we show that the function y = bx has a solution for any y > 0 and b 6= 1 ?
If it does not, then our definition is wrong ! That would be embarrassing...
The answer is of course yes but not that easy. Let’s illustrate it in a simple case: b = 2.
Roughly speaking, we know that

Ô when x is really small (for instance, x =−10), 2x is really small:
2−10 ≈ 0.001.

Ô when x is really large (for instance, x = 20), 2x is really large:
220 = 1048576.

Ô 2x is always increasing when x increase:
25 > 24 > 23 . . ..

That means that if you pick a number y between 0.001 and 1048576, you can find an x
between −10 and 20 such as 2x = y . Because 2x is increasing, you know that this number is
unique !
The real proof is in the same lines, and use the so called intermediate value theorem.

IV a) Laws of Logs

In the following, we consider that the logs are in the same base (i.e., base e).

D
ef

. FUNDAMENTAL LAW OF LOGS (LAW 1): The logarithm of a product is the sum of the loga-
rithms of the factors:

log A+ logB = log AB

This property is fundamental and is the main reason of the invention of logarithms.

P
ro

p.

POWER: LAW 2: The logarithm of a factor A to the power n is equal the n the logarithm of A:

log An = n log A

This property is derived from the law 1:

log An = log A×A× . . .×A︸ ︷︷ ︸
n times

= log A+ log A+ . . .+ log A︸ ︷︷ ︸
n times

l aw1

= n log A

Et voilà !
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IV. Logarithm

P
ro

p.

DIVISION AND SUBTRACTION: LAW 3: The logarithm of a fraction is the difference of the
logarithms of the factors:

log A− logB = log
A

B

This property is derived from the law 1 and law 2:

log
A

B
= log AB−1

= log A+ logB−1 l aw2
= log A− logB l aw1

Et voilà !

This law also shows that log1 = 0 !

M
ai

n
E
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e

A few examples:

Ô log4+ log7 = log(4×7), using law 1

Ô 2log3 = log
(
32

)= log9, using law 2

Ô log8− log2 = log

(
8

2

)
= log4, using law 3

Exercise 8.

Simplify the following, expressing each as a single log term
all answers are integers

log6+ log58.1 log2+ log108.2 log10− log28.3

log3+ log4+ log58.4 log12+ log28.5 log8− log48.6

log5+ log58.7 log6+ log18.8 log12− log3− log48.9

log5− log58.10 3log28.11 4log48.12

1

2
log98.13 2log6− log128.14 3log3− log68.15

2log4−3log28.16 2log4+ log28.17 1
4 log168.18

3log18.19 4log2−2log48.20 3log5− 1

2
log258.21

1

4
log256− 1

2
log48.22
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IV. Logarithm

IV b) More about base 10 and base e

IV b) i Logs to base 10

Let’s start with an illustration: log10 100 = 2, because 2 is the power to wich 100 has to be raised to get
100: 102 = 100 log10 100 = 2.

The notation in base 10 is very important as the core of scientific notations. They represent very
easily big numbers and small numbers:

Ô instead of 2500000000000000, we can write 2.5×1015.

Ô the number of atoms in 12 grams of carbone is roughly 602200000000000000000000, or 6.022×
1023.

Ô instead of 0.00000000000000012, we can write 1.2×10−16.

Ô the size of the HIV virus is 0.000000120m, or 120×10−9m.

G
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Logarithm to base 10 are from time to time called Briggsian logarithm.

Henry Briggs was a British mathematician from the XVIIth century. He calculated tables
in base 10 in 1624, in the book Arithmetica Logarithmetica. Tables remained used until
the 70’s. Because logarithms were so useful, tables of base-10 logarithms were given in
appendices of many textbooks !

IV b) ii Logs to base e

Denoted by ln, logs to base e have a special meaning in mathematics. It will become clearer when the
gradient of a function is examined in calculus, but it is called "natural" because it is linked to simple
functions. The e comes from the infamous exponential function (as in exponential growth).

G
oi

ng
fu

rt
he

r e is named "Euler’s number".
It is:

e = 2.71828. . .

Leonhard Euler introduced the letter e as the base for natural logarithms, writing in a letter
to Christian Goldbach of 25 November 1731.
But why "natural logarithm" ?
The natural logarithm can be defined for any positive real number a as the area under the
curve y = 1/x, between 1 and a. The "simplicity" of this definition has lead Gregoire de
Saint-Vincent’s to name it "natural".

Both types of logs can be used to solve equations where the power is unknown as the following
example shows.
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IV. Logarithm
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Let’s try to solve, for x,
15x = 40

The first step is to "take down" the index.

15x = 40 using the log x log10 15 = log10 40

For that, we do:

1. We have 15x = 40

2. We take the log, for instance to base 10:
we now have log10 15x = log10 40

3. We use the law 2:
we now have x log10 15 = log10 40

4. we can now identify x: x = log10 40

log10 15
= 1.26219

Let’s verify the solution:
151.26219 = 39.9999797

We have rounded x to 5 decimals, and hence the slight error.
We can do the same with the base e:

1. We have 15x = 40

2. We take the log e:
we now have loge 15x = loge 40

3. We use the law 2:
we now have x loge 15 = loge 40

4. we can now identify x: x = loge 40

loge 15
= 1.26219

Exercise 9.

Solve the following for either n, x or a. When relevant, use 3 decimals.

log2 8 = n9.1 log3 9 = n9.2 log4 64 = n9.3 log6 6 = n9.4

log2 32 = n9.5 log6 36 = n9.6 log7 49 = n9.7 log5 125 = n9.8

log4 4 = n9.9 log3 81 = n9.10 log7 n = 19.11 log2 x = 49.12

log5 x = 49.13 log3 x = 59.14 log3 7 = n9.15 log5 14 = n9.16

log2 9 = n9.17 n log2 8 = 69.18 log3 1 = n9.19 loga 7 = 19.20
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V. Solutions to exercises

loga 7 = 09.21 2.7 = 10x9.22 3.5 = 5x9.23 4.1 = 2x9.24

25 = 3x9.25 256 = 7x9.26 1 = 3.2x9.27 13 = 5.6−x9.28

21 = 1

2x9.29 21 = 2x9.30 34 = 3.4x9.31 5 = 2x9.32

V Solutions to exercises

Solution 1.

72 = 491.1 33 = 271.2 24 = 161.3 43 = 641.4

13 = 11.5 103 = 10001.6 34 = 811.7 03 = 01.8

26 = 641.9 44 = 2561.10 62 = 361.11 53 = 1251.12

27 = 1281.13 63 = 2161.14 28 = 2561.15 73 = 3431.16

104 = 100001.17 54 = 6251.18 45 = 10241.19 29 = 5121.20

04 = 01.21 92 = 811.22 64 = 12961.23 83 = 5121.24

82 = 641.25 35 = 2431.26 55 = 31251.27 93 = 7291.28

1201.29 36 = 7291.30 122 = 1441.31 123 = 17281.32

210 = 10241.33 46 = 40961.34 302 = 9001.35 84 = 40961.36

211 = 20481.37 203 = 80001.38 212 = 40961.39

Solution 2.

32 = 252.1 25 = 522.2 1 = 132.3 27 = 332.4

16 = 242.5 125 = 532.6 64 = 822.7 64 = 432.8

64 = 262.9 81 = 922.10 81 = 342.11 0 = 0102.12

512 = 292.13 216 = 632.14 1000 = 1032.15 1296 = 642.16

625 = 542.17 1024 = 2102.18 729 = 932.19 1 = 1152.20

729 = 932.21 1024 = 452.22 343 = 732.23 243 = 352.24

256 = 282.25 256 = 442.26 400 = 2022.27 2048 = 2112.28

Solution 3.p
4 =±23.1

p
9 =±33.2

p
20 =±4.473.3

p
100 =±103.4

p
1000 =±31.63.5

p
64 =±83.6

p
25 =±53.7

p
10 =±3.163.8

p
2 =±1.413.9

p
1 =±13.10

p
0 =±03.11

p−1 is not defined3.12
p

5 =±2.243.13
p

50 =±7.073.14
p

60 =±7.753.15
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V. Solutions to exercises

Solution 4.
3p8 = 24.1

p
9 = 34.2 4p16 = 24.3

p
1 = 14.4 3p27 = 34.5

p
36 = 64.6

p
0 = 04.7 6p64 = 24.8

p
81 = 94.9 4p81 = 34.10

7p128 = 24.11 3p1 = 14.12 3p216 = 64.13 6p729 = 24.14 np1 = 14.15
4p1296 = 64.16 3p1728 = 124.17 11p2048 = 24.18 np0 = 14.19 3p8000 = 204.20

Solution 5.

8 =p
645.1 4 = 3p645.2 2 = 5p325.3 7 = 3p3435.4

4 = 4p2565.5 3 = 5p2435.6 1 = 7p15.7 4 = 5p10245.8

11 =p
1215.9 0 = 5p05.10 100 =p

100005.11 27 =p
7295.12

36 =p
12965.13 8 = 3p5125.14 1 = 50p15.15 9 = 3p7295.16

32 =p
10245.17 0 = 50p05.18 8 = 4p40965.19 16 = 3p40965.20

Solution 6.

a4 ×a5 = a96.1 b3 ×b6 = b96.2 x ×x7 = x86.3

52 ×53 = 55 = 31256.4 q6 ×q6 = q126.5 67×68 = 615 = 4701849845766.6

10x ×10x = 102x6.7 a3 ×a4 ×a5 = a126.8 p2 ÷p2 = p0 = 16.9

37 ÷33 = 34 = 816.10 r 10 ÷ r 4 = r 66.11 68 ÷67 = 61 = 66.12

b20 ÷b10 = b106.13 kn ÷kn = k0 = 16.14 (p2)2 = p46.15

(q4)3 = q126.16 (M2)7 = M146.17 (x7)3 = x216.18

(w4)n = w4n6.19 (k6)4 = k246.20 a7 ×a−3 = a46.21

x−2 ×x−4 = x−66.22 10−4 ×10 = 10−36.23 n0 ×n7 = n76.24

r 0.5 × r 0.5 = r6.25 a5 ×a−5 = 16.26 p3.5 ×p2.5 = p6.27

c1−x × c1−x = c2(1−x)6.28 3−2 ÷32 = 3−46.29 w ÷w0.5 = w0.5 =p
w6.30

x−2 ÷x−2 = 16.31 f 0 ÷ f 4 = f −46.32 10−1 ÷103 = 10−4 = 0.00016.33

a−x ÷ax = a−2x6.34 (x−2)−5 = x106.35 (p0.5)2 = p6.36

(10−1)5 = 10−5 = 0.000016.37 (r 0.5)3 = r 1.5 = r
p

r6.38 (v0)8 = 16.39

w (1−x)(1+x) = w1−x2
6.40
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V. Solutions to exercises

Solution 7.

41/2 = 27.1 91/2 = 37.2 271/3 = 37.3 11/2 = 17.4

2431/5 = 37.5 01/2 = 07.6 641/2 = 87.7 641/3 = 47.8

641/6 = 47.9 1281/7 = 27.10 5121/3 = 27.11 43/2 = 87.12

322/5 = 47.13 82/3 = 47.14 274/3 = 817.15 13/7 = 17.16

1282/7 = 47.17 642/3 = 167.18 95/2 = 2437.19 47/2 = 1287.20

813/4 = 277.21 84/3 = 167.22 2563/8 = 87.23 10240.2 = 47.24

2430.6 = 277.25 2434/5 = 817.26 167/4 = 1287.27 40965/12 = 327.28

(
1

2

)−3

= 87.29
1

2−3 = 87.30
1

7−2 = 497.31

(
1

2

)−4

= 167.32

(0.125)−1 = 87.33 70 = 17.34
1

3−3 = 277.35

(
1

2

)−5

= 327.36

1

14−1 = 147.37
1

49−1/2
= 77.38

(
1

3

)−1

= 37.39

(
1

27

)−1/3

= 37.40

Solution 8.

log6+ log5 = log308.1 log2+ log10 = log208.2

log10− log2 = log58.3 log3+ log4+ log5 = log608.4

log12+ log2 = log248.5 log8− log4 = log28.6

log5+ log5 = log258.7 log6+ log1 = log68.8

log12− log3− log4 = log1 = 08.9 log5− log5 = log1 = 08.10

3log2 = log88.11 4log4 = log2568.12

1

2
log9 = log38.13 2log6− log12 = log1 = 08.14
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V. Solutions to exercises

3log3− log6 = log
9

2
, tricky, it is not an integer !8.15 2log4−3log2 = log28.16

2log4+ log2 = log328.17 1
4 log16 = log28.18

3log1 = log1 = 08.19 4log2−2log4 = log1 = 08.20

3log5− 1

2
log25 = log258.21

1

4
log256− 1

2
log4 = log28.22

Solution 9.

log2 8 = 39.1 log3 9 = 29.2 log4 64 = 39.3

log6 6 = 19.4 log2 32 = 59.5 log6 36 = 29.6

log7 49 = 29.7 log5 125 = 39.8 log4 4 = 19.9

log3 81 = 49.10 log7 7 = 19.11 log2 16 = 49.12

log5 625 = 49.13 log3 243 = 59.14 log3 7 = 1.7719.15

log5 14 = 1.6409.16 log2 9 = 3.1709.17 n log2 8 = 69.18

log3 1 = 09.19 log7 7 = 19.20 loga 7 = 0 is impossible9.21

2.7 = 100.4319.22 3.5 = 50.7789.23 4.1 = 22.0369.24

25 = 32.9309.25 256 = 72.8509.26 1 = 3.209.27

13 = 5.6−(−1.489) = 5.61.4899.28 21 = 1

2−4.3929.29 21 = 24.3929.30

34 = 3.42.8829.31 5 = 22.3229.32
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