Modal Analysis of Large Dataset, Intelligent and Optimal Control applications to fluid mechanics and minigrids

séminaire au LAGA

F. Guéniat florimond.gueniat@bcu.ac.uk February 2022

Birmingham City University

Outline

- Current context
- Understanding and Modelling : from Large to Sparse
- Deep Reinforcement Learning
 - Fluid Mechanics
 - Mini-grids
- Conclusions

Understanding complex systems

Intelligent control

Conclusions

EV and sustainability sustainable transport

Electric vehicles' Revolution

Intelligent control

Conclusions

EV and sustainability sustainable transport

Market share of EV

Source : Deloitte

.

Understanding complex systems In

Intelligent control

Conclusions

EV and sustainability sustainable transport

(Context)

outline

An unexpected issue?

		Home Wo	orld U.S.	Politics Econ	omy Busines	s Tech Mari	ets Opinion	Life & Arts	Real Estate	WSJ. Mag	gazine	Search Q
HARE US Ca Big	liforn gger (uia Wa Grid	ints C	ars to	Run o	n Elect	ricity.	It's C	boing t	o Ne	ed a Much	increase
elect	ricity den	nand.	croggrou r		bidenouto d	ac to tight p	oner supp	ineo. e e ing	an electric		, o trin a an ar action of	Terease
			Ste		1					UPCOM	IING EVENTS	>
) ()	1	3			h			May 24 2021	12:30 PM - 1:00 PM EDT Ask WSJ: A Closer Lo Biden's Tax Plans	ok at
				10	0			9		May 26 2021	12:00 PM - 1:30 PM EDT WSJ Women In: Won Power and Equity	nen,
0		Elon Mus	k's Visior	n for a \$25	i,000 Vehi	cle With Cl	neaper Ba	tteries		Jun	11:00 AM - 3:00 PM EDT	

THE WALL STREET IOURNAL

.

Subscribe Sign In

, - 4 / 52

How to transition?

By 2030, there will be no more ICE car sold.

40M vehicles - Energy equivalent to 20 to 50 nuclear plants.

EV and sustainability sustainable transport

Drag and Tatra's ad for the Tatra 77, circa 1930

It is the force resisting the movement due to the "friction" between the air and the car. It has been identified as important a while ago!

tems Intelligent control

EV and sustainability sustainable transport

Drag

It is still an important selling point :

Tesla says the new Model S is the world's most aerodynamic production car

With a coefficient of drag that's just 0.208, the updated Model S narrowly beats out the Lucid Air, but there's a catch or two.

The Model S is one slippery sedan Tesia

Drag

It is still an important selling point :

The main reason is because the drag is responsible for 40% of the energy consumption.

Reducing the drag by 20% means :

- extending the range of EV
- diminishing emissions/green house gas
- reducing energy consumption/fuel consumption

by 8% - aka a few nuclear plants !

Context) Understanding complex systems

Intelligent control

Conclusions

EV and sustainability sustainable transport

Access to Power

outline

Electricity is a major challenge.

There is a need for more power.

THE ECONOMIC TIMES Industry Technology and the second seco

Auto - Banking/Finance - Cons. Products - Energy - Renewables Ind/Goodu/Sus - Healthcare/Biotech - Services - Media/Entertainment - More

Duriness News + Industry + Derevables + India may build new coal plants due to low cost despite climate change

India may build new coal plants due to low cost despite climate change

Routers - Last Updated: Apr 19, 2021, 06:31 AM IST

India Times

Coal India retains production and official momentum in May

- Economic growth
- Urbanisation
- Transition to digital society
- Electrification of the vehicle fleet

Understanding complex systems EV and sustainability sustainable transport

Access to Power

Context

Electricity is a major challenge.

Many issues are not solved.

Blackoutreport

Nigeria Power Grid Collapses For Second Time This

Year

outline

May 13, 2021 A Chris Owens Sy 0 Comment III Power News

The power grid across Nigeria completely collapsed on Wednesday morning (12 May) plunging much of the country into a blackout

Black Out (local or nation-wide)

Conclusions

Connection to the Grid

Prices

Intelligent control

EV and sustainability sustainable transport

My takeaway

There is a global need for :

 Vehicles that are more energy efficient My main research : related to fluid mechanics and control engineering.

Producing more (clean) energy

- 1. Grids more efficient
- 2. Grids more economically attractive

My secondary research : related to grid engineering and control engineering.

Nonlinear systems

Both open and confined flows are complex, and has potentially an infinite number of DoF, but coherent structures seem to play a major role.

Brown & Roshko, (1974), J. Fluid Mech.

What is a coherent structure (see Chassaing, Hussain, Lumley ...)?

- spatially localized
- significant contribution to the kinetic energy
- significant life-time
- recurrent phenomenon
- material frontiers
- etc.

Von 'Heartman' street Isla Socorro ($Re > 10^{10}$!). one can think of features extaction

outline Context (Understanding complex systems) Intelligent control Conclusions

Modal framework Spatial properties Dynamic Modes Decomposition NU-DMD Sparse modeling

"In principle, concepts like coherent structures are best left implicit."

Hussain, "Coherent structures in a turbulent boundary layer", (1986) Phys. Fluids.

Several relevant frameworks exist to identify coherent structures.

Modal framework

The aim is to give a relevant representation of a dataset, e.g. the energy (POD) or the frequencies (Fourier).

POD mode 1 Bergmann & Cordier, (2008) J. Comput. Phys.

Al and Control for aerodynamics and grids

- 12 / 52

Modal framework

The aim is to give a relevant representation of a dataset, e.g. the energy (POD) or the frequencies (Fourier).

 $\underbrace{\text{Dataset}}_{\text{of dat decomposition}} \\ = \underbrace{\begin{array}{c} \text{Modal decomposition} \\ \text{Model decomposit$

It may lead to model reduction, through Galerkin-projection or truncature. There is a natural connection with <u>auto-encoder</u>.

Al and Control for aerodynamics and grids

 outline
 Context
 (Understanding complex systems)
 Intelligent control
 Conclusions

 Modal framework
 Spatial properties
 Dynamic Modes Decomposition
 NU-DMD
 Sparse modeling

Big data

Understand fluid mechanics

- Numerous fields/points of view
 - Velocity
 - Pressure
 - Temperature
 - Concentration ...
- Large 3DnC simulations
- Hi-Res experimental snapshots

How to **efficiently** identify coherent structures and/or the **most** relevant components from such a dataset?

Exp

 \rightsquigarrow Observability and uncertainties have to be quantified.

Leads to huge dataset

2

10000

1000

Spatial properties inheritance [PoF2014]

Let consider a spatial bounded linear operator applied to the observable :

 $\nabla \cdot y(x,t) = 0$

By injecting the modal decomposition :

$$\nabla \cdot y(x,t) = \nabla \cdot \left(\sum_{i} \alpha_{i}(t) \Phi_{i}(x)\right)$$
$$= \sum_{i} \alpha_{i}(t) \nabla \cdot \Phi_{i}(x)$$
$$= 0.$$

Then, when $\alpha_i(t)$ form an orthonormal basis, we have :

$$\int_{-\infty}^{\infty} \alpha_j(t) \sum_i \times \alpha_i(t) \nabla \cdot \Phi_i(x) dt = \int_{-\infty}^{\infty} \sum_i \alpha_j(t) \times \alpha_i(t) \nabla \cdot \Phi_i(x) dt$$
$$= \sum_i \nabla \cdot \Phi_i(x) \int_{-\infty}^{\infty} \alpha_j(t) \times \alpha_i(t) dt$$
$$= \nabla \cdot \Phi_j(x)$$
$$= 0.$$

Henceforward, as for the observable y, the divergence of each mode is zero. - gueniat.fr

, 14 / 52

Modal framework Spatial properties Dynamic Modes Decomposition NU-DMD Sparse modeling

"We represent a fluctuating signal by the mean (timeaveraged) contribution, the periodic wave and the turbulent motion. ."

Reynolds & Hussain, "The mechanics of an organized wave in turbulent shear flow", (1972) J. Fluid Mech.

What are dynamic modes?

Schmid¹; Rowley²;

 \rightarrow Assume there exists an operator of evolution, A, such as the y_k are realizations of a *nonlinear* process.

 \rightarrow Find a similar matrix to $\mathcal A.$ Dynamic modes are defined as eigenvectors of $\mathcal A,$ computed thanks to the similar matrix.

2. Rowley et al, (2009) J. Fluid Mech.

gueniat.fr

^{1.} Schmid et al (2008) 66th APS meeting; Schmid, (2010) J. Fluid Mech.

 outline
 Context
 (Understanding complex systems)
 Intelligent control
 Conclusions

 Modal framework
 Spatial properties
 Dynamic Modes Decomposition
 NU-DMD
 Sparse modeling

Defining the Evolution Operator \mathcal{A} [PoF2014]

If Φ is the flow of the fluid dynamical system :

$$\boldsymbol{X}_{n+1} = \Phi_{\Delta t} \boldsymbol{X}_n,$$

and Π is the projector onto the experimental space (*i.e.* $y_n = \Pi \boldsymbol{X}_n$), \mathcal{A} is defined by :

 $\mathcal{A} \circ \Pi = \Pi \circ \Phi_{\Delta t}.$

Then,

$$\mathcal{A}y_n = \mathcal{A} \circ \Pi \mathbf{X}_n$$
$$= \Pi \circ \Phi_{\Delta t} \mathbf{X}_n$$
$$= \Pi \mathbf{X}_{n+1}$$
$$= y_{n+1}$$

Spectral properties of DMD

When expressing a snapshot on the eigenspace of \mathcal{A} :

.

$$y_n = Ay_{n-1}$$

$$= A\sum_i a_i^{n-1} \phi_i, \quad \text{dec. on eigenspace}$$

$$= \sum_i Aa_i^{n-1} \phi_i$$

$$= \sum_i a_i^{n-1} \nu_i \phi_i, \quad \text{using eigenvalues properties}$$

By recurrence :

$$y_n = \sum_i a_i^1 \nu_i^n \phi_i \equiv \sum_i \nu_i^n \phi_i,$$

- 18 / 52

Spectral properties of DMD

$$y_n = \sum_j a_i^1 \nu_j^n \phi_i \equiv \sum_j \nu_j^n \phi_i,$$

rewriting the eigenvalues :

$$u =
ho \exp\left(\sqrt{-1}\omega\Delta t
ight).$$

The method identifies

• growth rates ρ

.

• frequencies ω

- 19 / 52

 outline
 Context
 (Understanding complex systems)
 Intelligent control
 Conclusions

 Modal framework
 Spatial properties
 Dynamic Modes Decomposition
 NU-DMD
 Sparse modeling

Shear layer DMD mode [PoF2014]

20 / 52

.

Shear layer DMD mode [PoF2014]

DMD and uniform sampling

The DMD algorithm needs an uniform sampling.

Data problems

- Corrupted dataset
- Incomplete dataset
- Convergence of data pre/post-treatment

Experimental issues : example taken from Fluid Mechanics

Observable : 2D2C field (PIV) \rightarrow 1000 \times 1000*px* Frequencies of the flow :

- 1. one low ($\approx 0.1Hz$) \Rightarrow 10s of sampling at least
- 2. one high ($\approx 200Hz$) \Rightarrow sampling rate at 400Hz

uniform sampling is not always possible

Depth of images : 12-bit Broad-band needed : $bb = 400 \times 1000^2 \times 12 > 4Gb.s^{-1}$ for at least 10s

Unreachable for standard material

outline Context (Understanding complex systems) Intelligent control Conclusions

.

Modal framework Spatial properties Dynamic Modes Decomposition NU-DMD Sparse modeling

Non-Uniform DMD [PoF2015]

With the expression

$$y_n = \sum_j a_i^1 \nu_j^n \phi_i \equiv \sum_j \nu_j^n \phi_i,$$

we can write more generally :

$$y_{t_n} = \sum_j \nu_j^{t_n} \phi_j + \boldsymbol{e} \approx \nu_1^{t_n} \phi_1 + \nu_2^{t_n} \phi_2 + \dots$$

$$K = M V + R \approx M V.$$

How to achieve this decomposition?

 $K = MV + R \approx MV.$

Pseudo-Vandermonde Matrix and Modes V^{3} is :

$$V = \begin{pmatrix} \lambda_1^{t_1} & \lambda_1^{t_2} & \dots & \lambda_1^{t_{N_t}} \\ \lambda_2^{t_1} & \lambda_2^{t_2} & \dots & \lambda_2^{t_{N_t}} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_m^{t_1} & \lambda_m^{t_2} & \dots & \lambda_m^{t_{N_t}} \end{pmatrix},$$

and M is the modes :

$$M = (\psi_1 \ldots \psi_m).$$

3 times t_i are taken arbitrary, not necessary ordered.

How to achieve this decomposition?

Obtaining of the Spatial Modes

Matrix M is easily computed :

 $M \approx K V^+$,

where V^+ is Moore-Penrose pseudo-inverse of V.

Modal framework Spatial properties Dynamic Modes Decomposition NU-DMD Sparse modeling

Obtaining the frequencies PoF2015

Compressed computing

A low number of modes is supposedly dominant \rightsquigarrow Temporal spectrum of the system is sparse.

- Compressed sensing approach⁴.
 - $\rightarrow m$ modes are chosen.
 - \rightsquigarrow only $N_t \ge 2m$ are necessary.
- Clustering⁵ components with similar spectral features, based on the sparse spectrum.

 \rightsquigarrow Select $\widetilde{N_x} \ll N_x$ ones.

 $\rightsquigarrow K$ is replaced by $\widetilde{K} \in \mathbb{R}^{\widetilde{N_x} \times \widetilde{N_t}}$

5 N_x is the size of the observable, and K is $N_x \times N_t$

^{4.} D.L. Donoho et al., (2006) IEEE T. Inform. Theory

Illustration PoF2015

Efficiency of compressed approach

Illustration ICTAM2012, PoF2015

Results on the cavity flow

Modal framework Spatial properties Dynamic Modes Decomposition NU-DMD Sparse modeling

"Why go to so much effort to acquire all the data when most of what we get will be thrown away?"

Donoho, "Compressed Sensing", (2006) T. Inform. Theory

Representation from a sparse observable [TCFD2016] A hash function $\mathfrak{h} : \mathcal{R}^{n_e} \to \mathcal{N}$ associates an entry \boldsymbol{y} with a key k.

$$\mathfrak{h}^{oldsymbol{v},w}\left(oldsymbol{y}
ight):=h_{0}+\left\lfloorrac{oldsymbol{v}\cdotoldsymbol{y}}{w}
ight
floor$$
 .

It can applied to any (sparse) observable y, embedded as

$$\mathbf{y} \equiv (y(t - \Delta t) \dots y(t - (n_e - 1)\Delta t)),$$

- ✓ every kind of observable (even 1-D)
- Very computational friendly

It is based on the Johnson-Lindenstrauss lemma

 outline
 Context
 (Understanding complex systems)
 Intelligent control
 Conclusions

 Modal framework
 Spatial properties
 Dynamic Modes Decomposition
 NU-DMD
 Sparse modeling

Representation from a sparse observable[TCFD2016] A hash function $\mathfrak{h} : \mathcal{R}^{n_e} \to \mathcal{N}$ associates an entry \boldsymbol{y} with a key k.

Keys (i.e., objects in the image space of \mathfrak{h}) generate a Voronoï paving of the observable space.

Modeling the dynamics

Based on transition probabilities from clusters to clusters, a stochastic model can be derived.

Blood Flow [PRE 2019]

Flow past cylinder [TCFD 2016]

AI and Control for aerodynamics and grids

Control using Statistical Learning TCFD 2016

A control law is learned with statistical learning (really, it is reinforcement learning).

Control is turned on at t = 15.

(Deep) Reinforcement learning Some focus on smart Grids

" By trying all actions in all states repeatedly, [the agent] learns which are best overall, judged by long-term discounted reward."

Chris Watkins, (1992), Machine Learning, 8, pp.279-292

outline Context Understanding complex systems (Intelligent control)

Conclusions

(Deep) Reinforcement learning Some focus on smart Grids

Framework of Deep Reinforcement Learning

- representation of the system : state x_s (can be discrete or continuous)
- 2. actuations : action a
- 3. policy : probability of chosing action *a* when in state x_s : $\pi(a|x_s)$
- reward : quantifying how good is the transition from state x_s to state x_{s+1} under the action a : r := r(x_s, a, x_{s+1})
 User designed (and hard to design!)

The main objective is to identify the best policy, aka the one that will maximize the sum of rewards over time.

Context Understanding complex systems (Inte

(Intelligent control)

Conclusions

(Deep) Reinforcement learning Some focus on smart Grids

outline

Framework of Deep Reinforcement Learning

Maximizing the rewards

To each transition, from a state x_s to the state x_{s+1} is associated a reward r:

$$V_{i} = \lim_{k \to \infty} E\left[\sum_{s=1}^{k} \gamma^{s-1} r\left(x_{s}, \pi(x_{s}), x_{s+1}\right)\right]$$

The optimal policy means maximizing the quantity V. It can be rewritten as the Bellman's equation :

$$V_i = r^{\pi}(\pi(i)) + \gamma \sum_j p(i, \pi(i), j) V_j.$$

outline Context Understanding complex systems

Intelligent control)

Conclusions

(Deep) Reinforcement learning Some focus on smart Grids

Roessler attractor

State components (solid line) and Predictions (marks) for the Roëssler system. Gray are : the control is turned on. It represents the oxidation of NADH by O1 when catalyzed by horseradish peroxidase.

outline Context Understanding complex systems (Intelligen

(Intelligent control)

Conclusions

(Deep) Reinforcement learning Some focus on smart Grids

Flow past bluff body

No control

Control

AI and Control for aerodynamics and grids

outline Context Understanding complex systems (Intelligent control) (Deep) Reinforcement learning Some focus on smart Grids

Conclusions

Flow past bluff body

The drag is reduced by almost 30%!

outline Context Understanding complex systems (Intelligent control) Conclusions (Deep) Reinforcement learning Some focus on smart Grids

Power Balance

A mini grid is :

- Receiving power from the renewable sources : P_{re}
- Providing enough power to meet the consumer needs : Pload
- Buying/selling power to the grid : P_{grid} .
- Charging/discharging the battery : P_{batt}

and the power balance is :

$$P_{load} = P_{re} + P_{batt} + P_{grid}$$

The objective is to optimize the management of P_{batt} and P_{grid} .

So more users will desire one

(Deep) Reinforcement learning Some focus on smart Grids

Maximizing revenues

We want to optimize

- profits
 - sell (when high prices)
 - minimize buying (except when low prices)
- sustainability/investment via battery management
 - increase lifetime
 - identify correct sizing
 - less heating/risks with second hand battery
- delivery to the consumer (loads, grid and REs are all intermittent)

(Deep) Reinforcement learning Some focus on smart Grids

Understanding complex systems

Challenges and constrains of Energy Management Systems

Fast controller

outline

Context

So it remains cheap/can work on different situations

Cheap actuators/sensors

Mostly metering, eventually connected

Limited access to sensors/information

So it is realistic

My belief : Data-driven methods are the best solutions !

- Physics informed But it is hard and expensive !
- Black Box But what do we know and understand?

Situations can evolve during usage !

Source of data

- Load comes from the PJM Hourly Energy Consumption Data
- Production comes from the US National Solar Radiation Database, the data point is Panjab.

outline Context Understanding complex systems (Intelligent control)

Conclusions

(Deep) Reinforcement learning Some focus on smart Grids

Numerical Results

Considered control objectives

are :

- user electric power demand satisfaction
- revenue maximization

gueniat.fr

osts

soon : minimizing battery operating

Constrains

- exceeding/missing power variations
- soon : unreliable main grid

outline Context Understanding complex systems (Intelligent control) Co

Conclusions

(Deep) Reinforcement learning Some focus on smart Grids

States of Charge

By its overall predictive nature, the DRL tends to take into account the worst possible scenarios, and hence still keep the SoC not at zero.

It also has a longer horizon that MPC.

It means a more resilient grid, able to respond to unpredicted/able demands.

outline Context Understanding complex systems (Intelligent control)

Conclusions

(Deep) Reinforcement learning Some focus on smart Grids

Energy Market Participation

By its predictive nature, the DRL tends to

sell 38% less

buy 16% less

It leads into savings in battery life cycles - increasing the lifetime by 27%..

 outline
 Context
 Understanding complex systems
 (Intelligent control)
 Conclusions

 (Deep)
 Reinforcement learning
 Some focus on smart Grids
 Conclusions
 Conclusions

Identical performances and Considerable speedup

Once trained, the DRL allows to have quick system. It means the on-site requirements remain cheap.

		time (sec)	Value (\$)	
	MPC	$\textbf{34.9} \pm \textbf{3.8}$	$\textbf{27.9} \pm \textbf{9.8}$	
	DRL	0.05 ± 0.003	28.5 ± 9.4	
	diff	6955%	3.8%	
The <mark>speed up</mark> is slightly increase	around d.	7000%, and th	ie overall perf	formance are

(Conclusions)

Conclusions

- Model methodologies, from large data to sparse observations¹⁻⁴.
- Control methodologies⁴⁻⁷.
- ▶ Smart Grid management⁶⁻⁷.

All these fields still require a lot of multi-disciplinary work !

Some publications

- 1. A Dynamic Mode Decomposition approach for large and arbitrarily sampled systems, PoF 27, 2015
- 2. Investigating mode competition and 3D features from 2D velocity fields in an open cavity flow by modal decompositions, PoF 26, 2014
- 3. POD-Spectral Decomposition for Fluid Flow Analysis and Model Reduction, TCFD 27, 2013
- 4. A statistical learning strategy for closed-loop control of fluid flows, TCFD, 2016
- 5. Deep Reinforcement Learning strategies for the reduction of the drag in the flow past buff bodies, HEFAT 2021
- 6. Modeling and Optimal Control of Energy Storage System For Battery Life Extension Via Model Predictive Control, European Control Conference 2021
- 7. Optimal operation of renewable energy microgrids considering lifetime characteristics of battery energy storage system, Conference on Decision and Control 2021

More infos available on my website :

www.gueniat.fr/publications.html

Thank you for your attention.

If you have any questions, I will be pleased to answer those.

