
Modal Analysis of Large Dataset, Intelligent and
Optimal Control

applications to fluid mechanics and minigrids

séminaire au LAGA

F. Guéniat
florimond.gueniat@bcu.ac.uk

February 2022
Birmingham City University

florimond.gueniat@bcu.ac.uk


outline Context Understanding complex systems Intelligent control Conclusions

Outline

I Current context
I Understanding and Modelling : from Large to Sparse
I Deep Reinforcement Learning

I Fluid Mechanics
I Mini-grids

I Conclusions

1 / 52
AI and Control for aerodynamics and grids

N

- gueniat.fr

gueniat.fr


outline Context Understanding complex systems Intelligent control Conclusions

EV and sustainability sustainable transport

Electric vehicles’ Revolution
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Market share of EV

Source : Deloitte
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An unexpected issue ?

4 / 52
AI and Control for aerodynamics and grids

N

- gueniat.fr

gueniat.fr


outline Context Understanding complex systems Intelligent control Conclusions

EV and sustainability sustainable transport

How to transition ?

By 2030, there will be no more ICE car sold.

40M vehicles - Energy equivalent to 20 to 50 nuclear plants.
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Drag and Tatra’s ad for the Tatra 77, circa 1930
It is the force resisting the movement due to the ”friction” between
the air and the car. It has been identified as important a while ago !
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Drag
It is still an important selling point :
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Drag
It is still an important selling point :

The main reason is because the drag is responsible for 40% of the
energy consumption.
Reducing the drag by 20% means :
I extending the range of EV
I diminishing emissions/green house gas
I reducing energy consumption/fuel consumption

by 8% - aka a few nuclear plants !
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EV and sustainability sustainable transport

Access to Power
Electricity is a major challenge.

There is a need for more power.
I Economic growth
I Urbanisation
I Transition to digital society
I Electrification of the vehicle

fleet

India Times
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EV and sustainability sustainable transport

Access to Power
Electricity is a major challenge.

Many issues are not solved.
I Black Out (local or

nation-wide)
I Connection to the Grid
I Prices
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EV and sustainability sustainable transport

My takeaway

There is a global need for :
I Vehicles that are more energy efficient

My main research : related to fluid mechanics and
control engineering.

I Producing more (clean) energy
1. Grids more efficient
2. Grids more economically attractive

My secondary research : related to grid engineering and
control engineering.
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Modal framework Spatial properties Dynamic Modes Decomposition NU-DMD Sparse modeling

Nonlinear systems
Both open and confined flows are complex, and has
potentially an infinite number of DoF, but coherent
structures seem to play a major role.

Brown & Roshko, (1974), J. Fluid Mech.

What is a coherent structure (see Chassaing, Hussain,
Lumley ...) ?
I spatially localized
I significant contribution to the kinetic energy
I significant life-time
I recurrent phenomenon
I material frontiers
I etc.

Von ’Heartman’ street
Isla Socorro (Re > 1010 !).

one can think of features
extaction
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”In principle, concepts like coherent structures are best left
implicit.”

Hussain, ”Coherent structures in a turbulent boundary layer”, (1986) Phys. Fluids.

Several relevant frameworks exist to identify coherent structures.
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Modal framework
The aim is to give a relevant representation of a dataset, e.g. the energy (POD) or the
frequencies (Fourier).

Cylinder wake

POD mode 1
Bergmann & Cordier, (2008) J. Comput. Phys.
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Modal framework
The aim is to give a relevant representation of a dataset, e.g. the energy (POD) or the
frequencies (Fourier).

Dataset
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It may lead to model reduction, through Galerkin-projection or truncature.
There is a natural connection with auto-encoder.
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Modal framework Spatial properties Dynamic Modes Decomposition NU-DMD Sparse modeling

Big data

Understand fluid mechanics
I Numerous fields/points of view

I Velocity
I Pressure
I Temperature
I Concentration ...

I Large 3DnC simulations
I Hi-Res experimental snapshots

Leads to huge dataset
I number of points : c × nd × N

with typically

c d N n

DNS 5 3 1000 124

Exp 2 2 10000 1000

How to efficiently identify coherent structures and/or the most
relevant components from such a dataset ?

 Observability and uncertainties have to be quantified.
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Spatial properties inheritance [PoF2014]
Let consider a spatial bounded linear operator applied to the observable :

∇ · y (x , t) = 0

By injecting the modal decomposition :

∇ · y (x , t) = ∇ ·
(∑

i αi (t)Φi (x)
)

=
∑

i αi (t)∇ · Φi (x)

= 0.

Then, when αj (t) form an orthonormal basis, we have :∫∞
−∞ αj (t)

∑
i ×αi (t)∇ · Φi (x) dt =

∫∞
−∞

∑
i αj (t)× αi (t)∇ · Φi (x) dt

=
∑

i ∇ · Φi (x)
∫∞
−∞ αj (t)× αi (t) dt

= ∇ · Φj (x)

= 0.

Henceforward, as for the observable y , the divergence of each mode is zero.
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”We represent a fluctuating signal by the mean (time-
averaged) contribution, the periodic wave and the turbu-
lent motion. .”

Reynolds & Hussain, ”The mechanics of an organized wave in turbulent shear flow”, (1972) J. Fluid Mech.
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What are dynamic modes ?
Schmid 1 ; Rowley 2 ;
→ Assume there exists an operator of evolution, A, such as the yk are realizations of
a nonlinear process.

A
yn+1

yn

→ Find a similar matrix to A. Dynamic modes are defined as eigenvectors of A,
computed thanks to the similar matrix.

1. Schmid et al (2008) 66th APS meeting ; Schmid, (2010) J. Fluid Mech.
2. Rowley et al, (2009) J. Fluid Mech.
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Defining the Evolution Operator A [PoF2014]

If Φ is the flow of the fluid dynamical system :

Xn+1 = Φ∆tXn,

and Π is the projector onto the experimental space (i.e. yn = ΠXn), A is defined by :

A ◦ Π = Π ◦ Φ∆t .

Then,
Ayn = A ◦ ΠXn

= Π ◦ Φ∆tXn

= ΠXn+1

= yn+1
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Spectral properties of DMD

When expressing a snapshot on the eigenspace of A :

yn = Ayn−1

= A
∑

i an−1
i φi , dec. on eigenspace

=
∑

i Aan−1
i φi

=
∑

i an−1
i νiφi , using eigenvalues properties.

By recurrence :
yn =

∑
i

a1
i ν

n
i φi ≡

∑
i

νn
i φi ,
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Spectral properties of DMD

yn =
∑

j
a1

i ν
n
j φi ≡

∑
j

νn
j φi ,

rewriting the eigenvalues :
ν = ρ exp

(√
−1ω∆t

)
.

The method identifies
I growth rates ρ

I frequencies ω
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Shear layer DMD mode [PoF2014]
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Shear layer DMD mode [PoF2014]
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DMD and uniform sampling

The DMD algorithm needs an uniform sampling.

Data problems
I Corrupted dataset
I Incomplete dataset
I Convergence of data

pre/post-treatment

Experimental issues : example taken
from Fluid Mechanics
Observable :
2D2C field (PIV) → 1000 × 1000px
Frequencies of the flow :

1. one low (≈ 0.1Hz) ⇒ 10s of sampling at
least

2. one high (≈ 200Hz)⇒ sampling rate at
400Hz

Depth of images : 12-bit
Broad-band needed :
bb = 400 × 10002 × 12 > 4Gb.s−1

for at least 10s

Unreachable for standard material

uniform sampling is not
always possible
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Non-Uniform DMD [PoF2015]

With the expression

yn =
∑

j
a1

i ν
n
j φi ≡

∑
j

νn
j φi ,

we can write more generally :

ytn =
∑

j ν
tn
j φj + e ≈ νtn

1 φ1 + νtn
2 φ2 + . . .

K = M V + R ≈ M V .
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How to achieve this decomposition ?

K = M V + R ≈ M V .

Pseudo-Vandermonde Matrix and Modes
V 3 is :

V =



λ
t1
1 λ

t2
1 . . . λ

tNt
1

λ
t1
2 λ

t2
2 . . . λ

tNt
2

...
...

. . .
...

λ
t1
m λ

t2
m . . . λ

tNt
m


,

and M is the modes :
M = (ψ1 . . . ψm) .

3. times ti are taken arbitrary, not necessary ordered.
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How to achieve this decomposition ?

Obtaining of the Spatial Modes
Matrix M is easily computed :

M ≈ K V+,

where V+ is Moore-Penrose pseudo-inverse of V .
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Obtaining the frequencies PoF2015

Compressed computing
A low number of modes is supposedly dominant  Temporal spectrum of the system
is sparse.
I Compressed sensing approach 4.

 m modes are chosen.
 only Ñt ≥ 2m are necessary.

I Clustering 5 components with similar spectral features, based on the sparse
spectrum.

 Select Ñx � Nx ones.

 K is replaced by K̃ ∈ RÑx×Ñt

4. D.L. Donoho et al., (2006) IEEE T. Inform. Theory
5. Nx is the size of the observable, and K is Nx × Nt
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Eigenvalues
Identification

Compressing/-
Clustering

DMD/Mi-
nimization

Vander-
monde matrix

Inversion of
the Vander-

monde matrix

Identification of
spatial modes

y → ỹ

(Nx ,Nt) →
(

Ñx , Ñt
)

O
(

Ñx Ñt
)

O
(

Ñx Ñt
2)

O (Ntm)

O (Ntm)

O (Nx m)
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Illustration PoF2015

Efficiency of compressed approach

y
/
H

x/L
0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

y
/
H
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−0.8
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−0.4
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0

0.2
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Illustration ICTAM2012,PoF2015

Results on the cavity flow
StL = 1.02 StL = 1.02 StL = 1.02

DMD mode NU-DMD mode NU-DMD mode

500 snapshots 10 randomly taken snapshots 10 randomly taken snapshots

7000 spatial points 7000 spatial points 10 spatial points
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”Why go to so much effort to acquire all the data when
most of what we get will be thrown away ?”

Donoho, ”Compressed Sensing”, (2006) T. Inform. Theory
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Representation from a sparse observable[TCFD2016]
A hash function h : Rne → N associates an entry y with a key k.

hv ,w (y) := h0 +
⌊v · y

w

⌋
.

It can applied to any (sparse) observable y , embedded as

y ≡ (y(t −∆t) . . . y(t − (ne − 1)∆t)) ,

every kind of observable (even 1-D)
Very computational friendly

It is based on the Johnson–Lindenstrauss lemma
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Representation from a sparse observable[TCFD2016]
A hash function h : Rne → N associates an entry y with a key k.

Keys (i.e., objects in the image space of h) generate a Voronoï paving
of the observable space.
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Modeling the dynamics
Based on transition probabilities from clusters to clusters, a stochastic model can be
derived.
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Blood Flow [PRE 2019]
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Flow past cylinder [TCFD 2016]
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Control using Statistical Learning TCFD 2016

A control law is learned with statistical learning (really, it is
reinforcement learning).

Control is turned on at t = 15.
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(Deep) Reinforcement learning Some focus on smart Grids

“ By trying all actions in all states repeatedly, [the agent]
learns which are best overall, judged by long-term dis-
counted reward . ”

Chris Watkins, (1992), Machine Learning, 8, pp.279-292
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(Deep) Reinforcement learning Some focus on smart Grids

Framework of Deep Reinforcement Learning

1. representation of the system : state xs (can be discrete or
continuous)

2. actuations : action a
3. policy : probability of chosing action a when in state xs :

π(a|xs)

4. reward : quantifying how good is the transition from state xs
to state xs+1 under the action a : r := r(xs , a, xs+1)
User designed (and hard to design !)

The main objective is to identify the best policy, aka the one that
will maximize the sum of rewards over time.
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(Deep) Reinforcement learning Some focus on smart Grids

Framework of Deep Reinforcement Learning

Agent

State estimator

Hidden
layer

Input
layer

Output
layer

state xi

Policy/Controller

Hidden
layer

Input
layer

Output
layer

Grid :

rewards ri+1 (training)

action ai

sent to actuators

observations (sensors)
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(Deep) Reinforcement learning Some focus on smart Grids

Maximizing the rewards

To each transition, from a state xs to the state xs+1 is associated a
reward r :

Vi = lim
k→∞

E
[ k∑

s=1
γs−1r

(
xs , π(xs), xs+1

)]

The optimal policy means maximizing the quantity V .
It can be rewritten as the Bellman’s equation :

Vi = rπ
(
π(i)

)
+ γ

∑
j

p
(
i , π(i), j

)
Vj .
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(Deep) Reinforcement learning Some focus on smart Grids

Roessler attractor

230 250 280
−4
−2

0
2
4

time, s
x

x1
x2
x3

State components (solid line) and Predictions (marks) for the
Roëssler system. Gray are : the control is turned on. It represents

the oxidation of NADH by O1 when catalyzed by horseradish
peroxidase.
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(Deep) Reinforcement learning Some focus on smart Grids

Flow past bluff body

No control

Control
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(Deep) Reinforcement learning Some focus on smart Grids

Flow past bluff body
The drag is reduced by almost 30% !

0 10 20 30

1.2

1.4

1.6

t

C d
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(Deep) Reinforcement learning Some focus on smart Grids

Power Balance
A mini grid is :
I Receiving power from the renewable sources : Pre
I Providing enough power to meet the consumer needs : Pload
I Buying/selling power to the grid : Pgrid .
I Charging/discharging the battery : Pbatt

and the power balance is :

Pload = Pre + Pbatt + Pgrid

The objective is to optimize the
management of Pbatt and Pgrid .

So more users will desire one
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(Deep) Reinforcement learning Some focus on smart Grids

Maximizing revenues

We want to optimize
I profits

I sell (when high prices)
I minimize buying (except when low prices)

I sustainability/investment via battery management
I increase lifetime
I identify correct sizing
I less heating/risks with second hand battery

I delivery to the consumer (loads, grid and REs are all
intermittent)

43 / 52
AI and Control for aerodynamics and grids

N

- gueniat.fr

gueniat.fr


outline Context Understanding complex systems Intelligent control Conclusions

(Deep) Reinforcement learning Some focus on smart Grids

Challenges and constrains of Energy Management Systems

I Fast controller
So it remains cheap/can work on different situations

I Cheap actuators/sensors
Mostly metering, eventually connected

I Limited access to sensors/information
So it is realistic

My belief : Data-driven methods are the best solutions !
I Physics informed But it is hard and expensive !

I Black Box But what do we know and understand ?

Situations can evolve during usage !
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(Deep) Reinforcement learning Some focus on smart Grids

Source of data
I Load comes from the PJM Hourly Energy Consumption Data
I Production comes from the US National Solar Radiation

Database, the data point is Panjab.
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(Deep) Reinforcement learning Some focus on smart Grids

Numerical Results

Considered control objectives
are :
I user electric power demand

satisfaction
I revenue maximization
I soon : minimizing battery operating

costs

Constrains
I exceeding/missing power

variations
I soon : unreliable main grid
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(Deep) Reinforcement learning Some focus on smart Grids

States of Charge

By its overall predictive nature, the DRL tends to take into
account the worst possible scenarios, and hence still keep the SoC
not at zero.
It also has a longer horizon that MPC.
It means a more resilient grid, able to respond to unpredicted/able
demands.
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(Deep) Reinforcement learning Some focus on smart Grids

Energy Market Participation

By its predictive nature, the DRL tends to
I sell 38% less
I buy 16% less

It leads into savings in battery life cycles - increasing the lifetime
by 27%..
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(Deep) Reinforcement learning Some focus on smart Grids

Identical performances and Considerable speedup

Once trained, the DRL allows to have quick system. It means the
on-site requirements remain cheap.

time (sec) Value ($)

MPC 34.9 ± 3.8 27.9 ± 9.8

DRL 0.05 ± 0.003 28.5 ± 9.4

diff 6955% 3.8%
The speed up is around 7000%, and the overall performance are
slightly increased.
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Conclusions

I Model methodologies, from large data to sparse
observations1−4.

I Control methodologies4−7.
I Smart Grid management6−7.

All these fields still require a lot of multi-disciplinary work !
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Some publications
1. A Dynamic Mode Decomposition approach for large and arbitrarily sampled

systems, PoF 27, 2015
2. Investigating mode competition and 3D features from 2D velocity fields in an

open cavity flow by modal decompositions, PoF 26, 2014
3. POD-Spectral Decomposition for Fluid Flow Analysis and Model Reduction,

TCFD 27, 2013
4. A statistical learning strategy for closed-loop control of fluid flows, TCFD, 2016
5. Deep Reinforcement Learning strategies for the reduction of the drag in the flow

past buff bodies, HEFAT 2021
6. Modeling and Optimal Control of Energy Storage System For Battery Life

Extension Via Model Predictive Control, European Control Conference 2021
7. Optimal operation of renewable energy microgrids considering lifetime

characteristics of battery energy storage system, Conference on Decision and
Control 2021

More infos available on my website :
www.gueniat.fr/publications.html
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Thank you for your attention.
If you have any questions, I will be pleased to answer those.
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