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Abstract— Islanded microgrids face reliability risks due to
renewable energy sources intermittent nature and the varying
load demands that could lead to continuous risk of power
mismatch in the system. Coupling renewable energy sources
(RESs) with advanced energy storage systems, e.g. battery
energy storage system (BESS), helps with maintaining the
power balance in the system. Limitations persist, in particular
regarding the BESS time autonomy, degradation issues and
overall costs.

The paper presents a novel battery aging conscious energy
management strategy to control a renewable energy system
powered by RESs (wind and solar) and an integrated battery
bank for energy storage in the events of excess RESs hours with
respect to the user requested electrical load. We design a model
predictive controller which takes into account the proposed
BESS operating and economical costs, the degradation issues,
the local load demand, while respecting system physical and
the dynamical constraints. The dynamics of the BESS have
been modeled by adopting the mixed-logic dynamic framework
which helps in capturing different behaviors according to its
possible operating modes. Numerical simulations show the
feasibility and the effectiveness of the proposed approach.

Index Terms— energy management, energy storage, MPC,
optimization, battery management.

I. TO DO LIST

• commands for eq.
• consistant system of references

II. INTRODUCTION

During the last decade, the renewable energy sources
(RES) have gained considerable attention from the energy
community. Wind and solar energies are the most promising
options [1]. However, there are some drawbacks associated
with them i.e., high installation costs, and their inherent in-
termittent nature [2]. Over the years, the control engineering
and energy community have worked on developing suitable
solutions to these issues. One effective solution is leverage
on the integration of the energy storage systems with the
renewable energy plants [3], [4].

In particular, the battery energy storage system (BESS)
integration with the renewable energy plants is the most
commonly used storage technology. Batteries have high
energy density and can supply average load demand for a
long time. Consequently, many efforts have been dedicated
to battery storage system characteristics, [5]–[8]. Almost
all studies conclude that the batteries may be beneficial in
the new energy paradigm, thanks to the faster time response,
peak shaving, low operational and maintenance costs.

The authors are with the Department of Engineering, Birmingham City
University, emails: {muhammad.shehzad3, florimond.gueniat}@bcu.ac.uk.

However, some issues, specifically robust performances
and aging (degradation in life cycles), are slowing the utiliza-
tion and adoption of batteries as energy storage [3], [9], [10].
Due to the batteries cycle time and power density, high charg-
ing/discharging times in micro grid applications are of 0.3-3
hours, [11]. This means frequent charging and discharging
cycles, and leads to high and numerous depth of discharge
(DOD) cycles. As the average depth of discharge (DOD) and
number of cycles increases, the lifetime of the batteries is
reduced [12]. It follows that the energy storage efficiency
is reduced. Battery degradation, sizing and its associated
cost is indeed one of the major concerns when designing
energy management strategies of DC microgrids [13]. For
this reason, the deployment of an advanced control policy for
optimal use of batteries is of paramount importance for the
generalization of affordable and reliable RES. For instance,
in [14], the authors presented a stochastic multi-microgrid
energy management strategy by implementing a chance-
constrained programming technique to model the power
system uncertainties. One main aspect in life cycle reductions
of the batteries is their frequent charging/discharging cycles,
which accordingly, was handled with the introduction of
the life spans degradation costs in the energy management
objective function. Khan et al. [15] presented an MPC based
battery energy management strategy to control multiple re-
newable resources of a microgrid contributing in satisfaction
of the user electrical load demand. Elkazaz et al. [16]
applied model predictive control (MPC) technique based on
mixed integer linear programming (MILP) to control the load
sharing of a hybrid ESS composed of PVS, and battery packs
also including some degradation issues related to the battery
energy management system. However, these studies do not
take into account the degradation issues concerning the start-
up/shutdown/standby life cycles associated with the batteries.

Consequently, efforts are still needed toward better control
strategies for the operations of renewable energy plants with
BESSs, especially when multiple objectives have to be ad-
dressed simultaneously. In particular, an energy management
system (EMS) that takes into account the BESS model, the
degradation issues concerning its life span, and minimizes
the logical states switching among different operating modes
of the battery, is needed. It is pivotal when maintenance,
lifetime and price are the most important issues, such as
in developing countries. This manuscript presents a first
economic battery energy system comprehensive case study
that tackles all the previously mentioned points. We design
an MPC which takes into account the BESS operating and
economic costs, the degradation related to the usage of the



batteries.The dynamics of the BESS and its possible operat-
ing modes have been modeled using mixed-logic dynamic.
The performance of the proposed system, in terms of battery
life extension, is compared favorably with the state of the art
approaches.

The manuscript is organized as follow: Section III presents
the details of the considered microgrid. The control design
is detailed in IV. The section V explains and discusses
the numerical results of the proposed research. Concluding
remarks are offered in Section VI.

III. MICROGRID DESCRIPTION

The microgrid under investigation is comprised of a wind
generator, solar panels, battery storage, the local loads, and
the control and communication systems. A conceptual block
diagram is shown in Fig. 1, parameters can be found in [3],
[17], [18]. In Table 1, the different degradation processes
considered by the controller are summarized.

TABLE 1: Considered degradation issues for the ESS.

Energy Storage System Degradation Issues
Number of working hours

Battery Storage Operation and Maintenance Costs
Start/Stop/standby Cycles
Fluctuations of current

Under nominal conditions, the powers from the wind
generator Pw, and the PV generator PPV are delivered
directly to the load demand. However, when an excess of
RE power production happens, it is shunted to the battery
pack. Conversely, whenever the RESs can not satisfy the
load demand, the battery is used as a backup power source,
thus achieving power supply continuity.

Fig. 1: Microgrid object of this study.

IV. CONTROLLER DESIGN

In this paper, we tackle the optimal operation planning of a
BESS to match power demand through the system available
power Pavl. The novelty of the approach is considering the
degradation issues associated with the battery energy storage,
in order to minimize the frequent charging and discharging
battery cycles, leading to improving the battery life span.
The optimization problem is developed and solved with the
use of MPC policy [19].

The block diagram of the controller is detailed in Figure 2.
The controller was implemented in Matlab using the solver
GUROBI1.

Fig. 2: MPC Controller.

A. State Space Model of the BESS

The battery storage dynamics are defined as a function
of the state of charge SOC at the previous time step
SOC(k) [3], and is modeled as a dynamic equation:

SOC(k + 1) = SOC(k) + ηch(k)Pch(k)δ
CH
ch (k)Ts

− Pdis(k)δ
DIS
dis (k)Ts

ηdis(k)
,

(1)

where Ts denotes the sampling period. The ηch(k) and
ηdis(k) represent battery charging and discharging effi-
ciencies with respect to the degradation. The battery pro-
duces and consumes electrical energy only in its charg-
ing/discharging modes. All the other modes are not asso-
ciated with the energy production and consumption thus, are
not associated to efficiency degradation.

B. Proposed MPC Formulation

According to the MPC scheme, at each instant k, a
sequence of future command inputs is selected by the
controller, spanning a time horizon. The selection relies on
an optimization procedure, that minimizes the cost function
which encompasses the fulfillment of the constraints. Only
the first sample of the control sequence is considered, and
subsequently, the horizon is shifted, [19].

The global cost function to be minimized by the MPC
controller is:

J(k) :=

T∑
j=1

(
ωbJb(k + j) + ωlJl(k + j)

)
, (2)

where Jb(k), and Jl(k) are the battery, and load demand
tracking cost functions, respectively. We wish to highlight
here that b ∈{ch, dis} are the charging and discharging states
of the battery. ωb, and ωl are the weighting factors used
to achieve meaningful and dimensionless operations of the
cost functions regardless of their unit measures. In the next
subsections, the cost function J and its components Jb, and
Jl will be presented in more detail.

1https://www.gurobi.com/

https://www.gurobi.com/


B.1. Battery Cost Function: The battery cost function
for operating costs minimization include various terms that
take into account for the battery aging, life hours reduc-
tion, and stand-by state energy consumption. The significant
variations in electrical loads along with the operating cycles
can severely damage the batteries through many ways [3].
The battery charging/discharging models in this research
study can be operated in 3 different physical modes, namely
the charge/discharge, no charge/discharge and the standby
modes. In order to improve readability of the proposed
battery models, we introduce here some notations that will
be used throughout the paper. The set I = {ch,dis} and the
index b ∈ I will indicate the battery charging (ch) or the
discharging (dis) state. Similarly, we define the sets A =
{NO− CH/DIS,STB,CH/DIS} that will represents the
transition between the battery modes, including the standby
one.

Our proposed cost function is:

Jb(k) :=

(
CCbat

Cyclesbat

)
δ
CH/DIS
b (k)

+ Costβα,bσ
β
α,b(k),

(3)

where α, β ∈ A, and α 6= β, k is the current time instant,
CC represents the battery capital cost, and the Costβαb

σβαb
(k)

denote the cost associated with the battery switching modes.
Additionally, in equation (3), a series of auxiliary logical
variables have been introduced. Further to the above, the
battery mode switching has been handled in terms of logic
commands [20]: each battery state is linked to a logic
variable 2 δαb (k) ∈ [0, 1], where α ∈ A, so that δαb (k) = 1
whenever for a given b ∈ I, the corresponding b is in state
α at time-step k, δαb (k) = 0 otherwise. Similarly, each state
transition is also linked to a logic variable σβα,i(k) ∈ [0, 1],
where α, β ∈ A, so that σβα,b(k) = 1 whenever for a given
b ∈ I, the corresponding b state is switching from the state α
to the state β at time-step k. Otherwise, σβα,b(k) = 0.

B.2. Battery mode logical expressions: For the battery in
charging state, the corresponding charging power is bounded
within the range [Pmin

ch , Pmax
ch ]. Therefore, by defining

Pch = Pch(k)δ
CH
ch (k), it results that Pch = Pch(k) ∈

[Pmin
ch , Pmax

ch ] when δCH
ch (k) = 1. Thus, being mutually

exclusive, all other logical variables δαch, α 6= CH are null.
Additionally, in the STB mode, the corresponding power

is P STB
ch . By defining P STB

ch = Pch(k)δ
STB
ch (k), it follows

that P STB
ch = Pch(k) when δSTB

ch (k) = 1. Again, all other
logical variables δαch with α 6= STB are null.

Finally, the battery in the No-CH state has PNo−ch(k) = 0,
along with null power consumption (no energy production
happens in this status). In general Pαb = Pbδ

α
b (k), therefore,

according to the operating condition of the battery, each

2Both the variable δαb and σβα,b are defined in the whole interval [0, 1].
The constraints introduced later will force them to take values only at the
boundaries of the interval.

δαb (k) can be determined following:
Pmin
b ≤ Pb(k) ≤ Pmax

b ⇐⇒ δ
CH/DIS
b (k) = 1,

Pb(k) = P STB
b ⇐⇒ δSTB

b (k) = 1,

Pb(k) = 0 ⇐⇒ δ
No−CH/DIS
b (k) = 1.

(4)
The modeling approach followed in this paper consists in
deriving a mixed-integer formulation of the operating con-
straints and logical devices states (δαb (k)) so as to be included
in a MPC controller and numerically solved. However, the
logical expressions in Eq. (4), being non linear, cannot be
handled by numerical solvers as they are. Instead, they re-
quire further manipulation to derive equivalent mixed-integer
inequalities. To do so, as an intermediate state, based on the
three logical states of the battery, six 6 auxiliary Boolean
variables can be defined as deriving an equivalent (Eq. (4))
mixed-integer inequality. The Boolean variables will then be
utilized to achieve an equivalent big-M formulation, [20].

Since the battery will work in one and only one mode at
any time k, the additional constraint

δ
NO−CH/DIS
b (k) + δSTB

b (k) + δ
CH/DIS
b (k) = 1 (5)

has to be considered.
The transitions among states can be defined by suitably

combining logical variables with standard logical connec-
tives. According to the number of states, there are 6 pos-
sible mode transitions. The resulting inequalities have been
derived and provided as constraints in the proposed MPC
controller:

σβα,b(k) = δαb (k − 1) ∧ δβb (k), (6)

where σβα,b ∈ [0, 1].
Once again, the non-linearity between the product term of

the two logical states as derived in Eq. (6) can be resolved
with the help of the equivalent big-M formulation, [20].

C. The battery lifetime quantification method

An important aspect of the battery energy storage system
design is its life-span. The battery life time quantification
method has been reported in the literature to be accurate
[21], and is used in this manuscript. As shown in Fig. 2, the
BESS drives the battery state of charge (SOC), based on the
available RES generations and the electrical demand. That
SOC profile works as an input for the battery lifetime model
developed in this subsection. In particular, the calculation
of the battery cycles is key to estimate the battery lifetime.
The BESS shallow cycle is defined as a single partial
charging/discharging cycle. The constraints in Eq. (7) are
used to determine the BESS partial cycles. When the value of
the binary discharging state δDIS(k) changes from 1 to 0 and
to 1 again, one partial cycle has been performed. The value
of partial cycles (Pc) will be 1 every time the discharging
process is initiated, otherwise it is 0, following [22].

δDIS(k)− δDIS(k − 1) = 1 =⇒ Pc(k) = 1,

δDIS(k)− δDIS(k − 1) ≤ 0 =⇒ Pc(k) = 0.
(7)



C.1. Depth of Discharge: DOD is generally defined as
the ratio of the discharged energy to the rated capacity, [22].
Based on the obtained optimal rated capacity of BESS,
the formula shown in Eq. (8) is developed and used to
calculate the optimal depth of discharge at each time interval.
The maximum DOD value over the planning time horizon
is the optimal maximum value as shown in Eq. (9). The
maximum DOD is limited by the operating range of the
battery specified by the system planner (80% in this study).

DOD(k) = 1− SOC(k). (8)

DODmax = max(DOD(k)). (9)

The SOC of the BESS is the ratio of the current energy
capacity of the BESS to its rated energy capacity. Since a
discharge varies in depth, the optimal depth of discharge
at each counted partial discharge cycle at time interval k
depends on the DOD at the previous time, k − 1 and the
DOD at the period k, as given in Eq. (10):

DODPc(k) = DOD(k)−DOD(k− 1). (10)

C.2. Estimation of BESS Lifetime: We use Miner’s rule,
following [21], [23], to estimate the aging of the battery.
The summation of the BESS partial cycles, Ncycles over
the planning time horizon (24h, or one day, in the present
work) is compared to the maximum number of cycles CF,
as provided by the manufacturer.

BESSaging =
Ncycles

CF
(11)

The number of cycles to failure CF at maximum DOD =
100% is usually around 3000 for Li-ion batteries.

The estimate of the number of performed partial cycles
is done by summing, for each discharge DODPc

, the corre-
sponding fraction of numbers of cycles to failure CFPc

at
DODPc

. Essentially, it means associating any discharge to a
fraction of a complete cycle:

Ncycles =
∑
k

Pc(k)/CFPc
(k). (12)

The number of cycles to failure (CFPc
) depends on DODPc

and is obtained from the relation between life cycle and
depth of discharge. This relation is usually provided by the
manufacturer of the adopted battery technology, as illustrated
in Fig. 3b.

Finally, the lifetime BESSLifetime of the battery, in years,
is simply the inverse of the BESSaging:

BESSLifetime =
1

365× BESSaging
. (13)

Estimating the number of complete discharge cycles is
done by comparing the BESSLifetime of a battery system
to its maximum number of discharge cycles, as given by the
manufacturer. The number of complete cycles per year NCC
is calculated as:

NCC =
CF

BESSLifetime
. (14)

D. System Constraints

In order to achieve a realistic optimal control policy, the
energy balance equation must be satisfied at each time-step
k. Similarly, the battery pack has a limitation in the power
that it can absorb or provide, and the SOC is bounded. Thus,
the following equality constraint will be also included:

Pavl(k) = PW (k) + PPV

+ Pdis(k)δ
DIS
dis (k)− Pch(k)δCH

ch (k) (15a)
Pmin,b ≤ Pb(k) ≤ Pmax,b (15b)

SOCmin ≤ SOC(k) ≤ SOCmax. (15c)

E. Electrical Load Tracking Cost Function

One control goal of the proposed controller is the track-
ing of the requested demand Pload. To achieve this, the
controller will also minimize the cumulative squared error
between Pload and Pavl:

Jl(k) :=

T−1∑
j=0

(
Pavl(k + j)− Pload(k + j)

)2
. (16)

V. SIMULATIONS

The MPC controller developed in previous sections has
been implemented and simulated in MATLAB/YALMIP
using GUROBI optimizer. For simulations, the parameters
affecting the cost functions used by the optimizer have been
chosen as reported in Table 3.

We performed simulations for a periodic 24 hour horizon.
It is worth writing here that our main contribution of the
manuscript relies in developing preliminary operating models
needed for running the battery-based ESS for long control
periods. In addition, answering the energy demand remains
the aim of the system. The controller track the electrical
reference as per the amount of available energy in the system
through renewable sources and battery SOC. In order to show
the control strategy effectiveness in terms of battery cycle
maximization, the proposed control strategy, with inclusion
of battery standby model, is compared with standard, litera-
ture based approaches [3], [21], [24].

A. Simulations without Battery standby state model

In the scenario under consideration, the frequent variations
of the electrical load demand with respect to the renew-
able energy generations have been considered. In particular,
Fig. 3a illustrates the frequent imbalance of the renewable
generations and the user requested electrical load demand. It
is possible to notice in Figs. 3c and 3d, that after meeting
the load, the excess of energy is shunted towards to the
battery pack. Figs. 3c and 3d also illustrate the battery
switching with respect to its charging and discharging states,
respectively.

It is observable from Fig.4a, the controller at each time-
step k successfully tracks the electric demand in all 24 hours
of the day with the system available power.

The associated DODPc of the partial cycles performed by
the battery is depicted in Figs. 3e and 3f. Using the Eqs.
(12) and (13), the battery life time for the standard approach
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Fig. 3: Numerical results. (a): Renewable generations and Load Demand. (b) Battery number of complete working cycles
with respect to the DOD. (c) Battery SOC and mode, with literature approach. (d) Battery SOC and mode, with proposed
control. (e): Partial cycle Pc with literature approach. (f): Partial cycle Pc with proposed control strategy.



TABLE 2: Results Comparison.

Approach Battery working cycles BESSlifetime Completed cycles/year Average DOD Life extended (years)
Literature approach [3], [21] 3000 19.7 152.28 36.04% -
Present approach 3000 25.3 118.57 32.1% 5.6
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Fig. 4: System available power and demand. (a): standard approach. (b): optimized approach.

TABLE 3: MPC parameters.

Li-Ion battery parameters
ηch = 0.90 ηdis = 0.95
CCbat = 125 £/kWh Cyclesbat = 3000

CostCH/DIS = 0.055 £ CostNo−CH/DIS = 0.055 £
CostSTB = 0.0275 £ Pmin

b = 0.2 kW

PSTB
b = 0.2 kW Pmax

b = 5kW
ωb = 0.666 ωl = 0.334

is calculated, with BESSlifetimestand = 19.70 years. Using
Eq. (14), the equivalent complete number of cycles per year
performed by the battery system is NCCstand = 152.28 cy-
cles/year. This is based on the maximum optimal DOD
of 80%. It corresponds to an average of 0.41 complete
cycles/day.

B. Simulations with Battery standby state model

The MPC controller implemented on the novel battery
model with the inclusion of the standby state is able to
successfully track the electrical reference throughout the day
as illustrated in Fig. 4b.

The excess of energy after meeting the load demand is
stored in the batteries as shown in Fig. 3d to be used as a
backup source during low or nearly zero RES hours. The
battery logic state switchings can also be seen from Fig. 3d.

Likewise, in the battery simulations, the associated DODpc
of the partial cycles performed by the battery is depicted
in Fig. 3f. Based on these consumed partial cycles, the
BESS life time in years has been calculated as in Eq. (12),
and (13) . The lifetime of the BESS via proposed control
strategy is BESSlifetimeopt = 25.3 years. Similar to what has
been calculated with the standard approach, the equivalent

complete number of cycles per year in the proposed control
strategy performed by the battery is computed based on the
maximum optimal DOD of 80%. The NCCopt is found to
be 118.57 complete cycles/year (averaging 0.33 complete
cycles/day).

With the proposed approach, the power needs are fulfilled,
while frequent charging/discharging events have been mini-
mized. The lifetime of the energy storage is increased almost
by 28% when compared to the standard approach.

C. Comparison with respect to the battery life

This subsection summarizes the performance of the pro-
posed novel battery model with the standard approach, and
the results are summarized in Table 2. The parameters taken
in the comparison process are the battery working cycles,
BESSlifetime, completed cycles per year, completed cycle
per day, and the life time extension of the battery energy
storage system.

Both the controllers were able to meet the electrical
reference perfectly, but the frequent charging/discharging
battery events can be clearly seen from the simulations
carried out without incorporating the standby state battery
and cost models as shown in Fig. 3c. Moreover, Fig. 3c
also reflects the battery switching modes (charging and
discharging) under regular literature based approach over
24 hour simulation. On the other hand, the number of
charging/discharging battery events are reduced (see Fig. 3d)
through the MPC implementation of the proposed strategy.
It is possible to notice that during the hours 12-16, the
controller switches the battery to its charge state, and a slight
increase in the battery SOC with respect to the k − 1 can
be seen from Fig. 3c. This results in frequent charge cycles



consumption of the battery life. The controller allows the
battery to remain in standby state up to 37.5% of the time,
as seen in Fig. 3d. The use of the standby state in the battery
models combined with considering the partial cycles in the
cost function have led to savings in battery life cycles, thus
maximizing its lifetime.

One objective is to restrict/avoid slight charge/discharge
battery events. Indeed, in Fig. 3d, during hours 12-16, the
controller did not switch the battery to its charge state, rather,
it pushed the battery in the standby or idle state. The mode
switchings of the battery under the proposed MPC controller
has also been shown in Figs. 3c and 3d. It can also be seen
that the battery is not fully charged under our policy, which
minimizes the stress on the battery.

The second objective is to restrict/avoid deep discharge
battery events. Indeed, in Fig. 3d, during hours 3-5, the
controller did not switch the battery to its charge state,
rather it pushed the battery in the standby or idle state.
Consequently, partial cycles are less deep. It can be seen
that the amplitude of discharge is limited when using the
proposed approach, see Figs. 3e and 3f. The average DOD
for the standard approach is 36.04%, compared to 32.1%
with our approach. The simulations proved that, with the
help of the implementation of the proposed control system,
the battery life in comparison to the literature based studies,
has been extended to almost 5.6 years with the saving of
almost 33.71 complete cycles/year.

The battery improved performance has practical effects.
When comparing Figs. 3c and 3d, the available capacity is
higher before expected high demand times, and lower before
high generation times. This means that the microgrid flexibil-
ity is improved. Additionally by reducing the charge events,
the integrity of the battery is improved, and the operation
and maintenance costs are reduced, when compared to the
standard approach.

VI. CONCLUSION

In this manuscript, we proposed an MPC control strategy
for a battery-based ESS integrated in a RES facility. The
proposed MPC scheme takes into account the cost that the
battery model introduces at each time it switches between
different operating modes, thus decreasing the corresponding
number of life cycles and efficiencies. Moreover, all the
system operational and physical limitations, such as the
battery power consumption in their standby states, are con-
sidered. The costs related to the operations of BESS and the
developed mixed logic dynamic model have been included
in a MPC scheme. The proposed MPC was compared with
standard literature based approaches. The results demonstrate
that the presented approach provides better cost savings and
maximized the lifetime of BESS by almost 28%. Simulations
have been carried out by tracking reference power provided
by the local load demand, during 24 hours test runs. Correct
working operations of the BESS and its different operating
modes have been validated through numerical results. An
extra business feature of energy market participation through
utility grid interaction for the solar and the wind farm owners

has also been considered in the proposed research study, and
will be reported in a subsequent manuscript. Future works
will integrate the proposed results into a multi timescale
BESS power regulation market, and deploy the control strat-
egy to the Birmingham City University laboratory microgrid.

REFERENCES

[1] B. Liu, S. Liu, S. Guo, and S. Zhang, “Economic study of a large-scale
renewable hydrogen application utilizing surplus renewable energy and
natural gas pipeline transportation in china,” International Journal of
Hydrogen Energy, vol. 45, no. 3, pp. 1385–1398, 2020.

[2] G. Maggio, A. Nicita, and G. Squadrito, “How the hydrogen pro-
duction from res could change energy and fuel markets: A review of
recent literature,” International Journal of Hydrogen Energy, vol. 44,
no. 23, pp. 11 371–11 384, 2019.

[3] F. Garcia-Torres, L. Valverde, and C. Bordons, “Optimal load shar-
ing of hydrogen-based microgrids with hybrid storage using model-
predictive control,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 8, pp. 4919–4928, 2016.

[4] A. Chapman, K. Itaoka, H. Farabi-Asl, Y. Fujii, and M. Nakahara,
“Societal penetration of hydrogen into the future energy system: Im-
pacts of policy, technology and carbon targets,” International Journal
of Hydrogen Energy, vol. 45, no. 7, pp. 3883–3898, 2020.

[5] V. Murty and A. Kumar, “Multi-objective energy management in
microgrids with hybrid energy sources and battery energy storage
systems,” Protection and Control of Modern Power Systems, vol. 5,
no. 1, pp. 1–20, 2020.

[6] S. Zeynali, N. Rostami, A. Ahmadian, and A. Elkamel, “Two-stage
stochastic home energy management strategy considering electric
vehicle and battery energy storage system: An ann-based scenario
generation methodology,” Sustainable Energy Technologies and As-
sessments, vol. 39, p. 100722, 2020.

[7] M. Elkazaz, M. Sumner, and D. Thomas, “Energy management system
for hybrid pv-wind-battery microgrid using convex programming,
model predictive and rolling horizon predictive control with experi-
mental validation,” International Journal of Electrical Power & Energy
Systems, vol. 115, p. 105483, 2020.

[8] L. Luo, S. S. Abdulkareem, A. Rezvani, M. R. Miveh, S. Samad,
N. Aljojo, and M. Pazhoohesh, “Optimal scheduling of a renewable
based microgrid considering photovoltaic system and battery energy
storage under uncertainty,” Journal of Energy Storage, vol. 28, p.
101306, 2020.

[9] B. Lokeshgupta and S. Sivasubramani, “Multi-objective home energy
management with battery energy storage systems,” Sustainable Cities
and Society, vol. 47, p. 101458, 2019.

[10] Y. Kalinci, A. Hepbasli, and I. Dincer, “Techno-economic analysis
of a stand-alone hybrid renewable energy system with hydrogen
production and storage options,” International Journal of Hydrogen
Energy, vol. 40, no. 24, pp. 7652–7664, 2015.

[11] M. Glavin, P. K. Chan, S. Armstrong, and W. Hurley, “A stand-alone
photovoltaic supercapacitor battery hybrid energy storage system,”
in 2008 13th International power electronics and motion control
conference. IEEE, 2008, pp. 1688–1695.

[12] W. Li and G. Joos, “A power electronic interface for a battery
supercapacitor hybrid energy storage system for wind applications,” in
2008 IEEE Power Electronics Specialists Conference. IEEE, 2008,
pp. 1762–1768.

[13] S. Wang, D. Guo, X. Han, L. Lu, K. Sun, W. Li, D. U. Sauer,
and M. Ouyang, “Impact of battery degradation models on energy
management of a grid-connected dc microgrid,” Energy, vol. 207, p.
118228, 2020.

[14] F. H. Aghdam, N. T. Kalantari, and B. Mohammadi-Ivatloo, “A
chance-constrained energy management in multi-microgrid systems
considering degradation cost of energy storage elements,” Journal of
Energy Storage, vol. 29, p. 101416, 2020.

[15] M. R. B. Khan, J. Pasupuleti, J. Al-Fattah, and M. Tahmasebi,
“Energy management system for pv-battery microgrid based on model
predictive control,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 15, no. 1, pp. 20–25, 2019.

[16] M. Elkazaz, M. Sumner, E. Naghiyev, S. Pholboon, R. Davies, and
D. Thomas, “A hierarchical two-stage energy management for a home
microgrid using model predictive and real-time controllers,” Applied
Energy, vol. 269, p. 115118, 2020.



[17] J. Spendelow, J. Marcinkoski, and S. Satyapal, “Doe hydrogen and
fuel cells program record 14012,” Department of Energy (DOE), vol.
125, 2014.

[18] D. Howel, “Battery status and cost reduction prospects. in ev ev-
erywhere grand challenge battery workshop,” Department of Energy
(DOE), vol. 125, 2012.

[19] C. Bordons, F. Garcia-Torres, and M. A. Ridao, Model Predictive
Control of Microgrids. Springer, 2020.

[20] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[21] T. M. Masaud and E. El-Saadany, “Correlating optimal size, cycle
life estimation, and technology selection of batteries: A two-stage ap-
proach for microgrid applications,” IEEE Transactions on Sustainable
Energy, 2019.

[22] B. Xu et al., “Degradation-limiting optimization of battery energy
storage systems operation,” 2013.

[23] S. Bahramirad, W. Reder, and A. Khodaei, “Reliability-constrained
optimal sizing of energy storage system in a microgrid,” IEEE Trans-
actions on Smart Grid, vol. 3, no. 4, pp. 2056–2062, 2012.

[24] A. Bouakkaz, A. J. G. Mena, S. Haddad, and M. L. Ferrari, “Schedul-
ing of energy consumption in stand-alone energy systems considering
the battery life cycle,” in 2020 IEEE International Conference on
Environment and Electrical Engineering and 2020 IEEE Industrial and
Commercial Power Systems Europe (EEEIC/I&CPS Europe). IEEE,
2020, pp. 1–4.


	To do list
	Introduction
	Microgrid Description
	Controller Design
	State Space Model of the BESS
	Proposed MPC Formulation
	Battery Cost Function
	Battery mode logical expressions

	The battery lifetime quantification method
	Depth of Discharge
	Estimation of BESS Lifetime

	System Constraints
	Electrical Load Tracking Cost Function

	Simulations
	Simulations without Battery standby state model
	Simulations with Battery standby state model
	Comparison with respect to the battery life

	Conclusion
	References

