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Abstract— The battery energy storage system’s integration
with renewable energy (RE) micro-grids play an important
role in solving power supply problems. To achieve reliable
and economic operations of a RE micro-grid, in addition to
maximize the integration of of renewable resources, the lifetime
characteristics of a battery energy storage system also need to
be fully investigated.

This research study develops an optimization model that in-
cludes battery life loss cost, states switching costs, and operation
and maintenance cost to obtain a set of optimal parameters
of operation strategy. Considering the lifetime characteristics
of battery storage system, a multi-objective optimization to
maximize the power sold values, and to minimize the degrada-
tions concerning battery life cycles has been achieved being
main control objectives of the research under study. Based
on a model adopting mixed-integer constraints and dynamics,
the problem of optimal load demand tracking, and electricity
market participation is solved through the implementation of an
model based predictive control (MPC) scheme. The efficacy of
the proposed controller is proved through extensive simulations
where the RE-based micro-grid running costs are minimized.

Index Terms— energy management, energy storage, MPC,
optimization, battery management.

I. INTRODUCTION

Clean energy resources in comparison to fossil fuels have
raised considerable attention in energy markets during the
last decade. Among them, a promising option is wind and
solar [1]. However, their development is slowed down by the
inherent nature of being intermittent [2].

However, the adoption of an energy storage system (ESS)
combined with renewable energy sources (RES) appears to
be a paradigm shift for the energy market, as it introduces
new possibilities [3]. However, proper management strategies
are required, the complexity of the plants increasing [4], [5].

In general, optimal operations of microgrids with RESs
and battery-based ESSs are essential for their participation
to the energy market especially if the operational constraints,
the limitations of the ESSs, degradation, operational and
maintenance costs need to be taken into account.

In practice, an energy management system (EMS) should
pursue the following objectives:
• extend the battery lifetime by optimizing their working

cycles;
• protect batteries from intensive use by limiting their

power rates;
• track local and the contractual loads smoothly in a more

feasible and economical way;
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• to optimize the energy exchanged with the grid for
high degree of autonomy and reducing operation and
maintenance costs.

Model predictive control (MPC) is a technique that can
answer these issues by providing the control inputs to safely
and efficiently operate the system.

For instance, the implementation of a supervisory MPC
and hybrid ESS for optimal power market management was
presented in [6]. In [7], the development of model predictive
control for hybrid co-generation power plants is carried out
introducing the mixed logic dynamic (MLD) framework.
However, the authors do not take into account other kinds of
ESS nor battery degradation.

Further efforts on the optimal control strategies for the
operations of wind farms/solar parks with battery-based
ESSs when multiple aspects have to be addressed simulta-
neously, is still needed. Particularly, to the best of authors’
knowledge, the reference demand tracking with the battery-
based energy system to achieve stable energy production and
satisfying the forecasted load demand taking into account
all the operational constraints, degradation, and operational
and maintenance costs, has been very little explored in the
literature.

In this paper optimal operations planning of a battery-
based wind farms/solar parks are investigated. The whole
system exactly forms a microgrid with a local load, whose
demand has to be satisfied. In order to deliver a practical
control strategy, the proposed ESS economic costs and
degradation are also considered. In addition, the economic
benefit, from the interaction with the utility grid by selling or
buying energy, is maximized. The RE microgrid is modeled
by means of the MLD framework so as to comprehensively
take into account for the real components’ logic behavior
and continuous dynamics.

Numerical simulations are performed to demonstrate the
applicability and feasibility of the approach proposed against
data taken from the literature. The results shows that the
proposed control strategy when compared with the literature
based EMSs results in battery life extension by 22%.

II. SYSTEM DESCRIPTION, MODELING AND
CONSTRAINTS

Figure 1 shows the conceptual block diagram of the
microgrid under investigation.
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Fig. 1: Microgrid sketch. The renewable power flow, and the
data flow are denoted by green and red lines, respectively.
Colors available online

Under the ideal condition, the local load reference demand
will be met directly from the renewables. In that case,
the battery-based ESS is not operated. In real operating
conditions, the excess power from the RESs is used to charge
battery system, then the stored energy will be delivered to
the loads in low or nearly zero wind/solar hours.

A. Model and MLD Constraints of the Battery States

The battery energy storage system modeled in the research
study can be operated in 3 different physical modes, namely
the on, the off and the standby modes. In order to improve
readability of the proposed battery models, we introduce here
some notations that will be used throughout the paper. The
set I = {ch,dis} and the index b ∈ I will indicate the
battery charging (ch) or the discharging (dis) state. The set
A = {NO− CH/DIS,STB,CH/DIS} and the index α ∈
A will represents the transition between the battery modes,
including the standby one.

The states NO− CH/DIS, STB, and CH/DIS of the
battery are derived from the mixed product between i) the
associated logical variable and ii) the power relevant for that
state.

For the sake of illustration, let us examine the battery
in its charge state. The corresponding input power for the
charge state P in

ch is bounded within [Pmin
ch , Pmax

ch ]. Thus,
by defining P in

ch = Pch(k)δ
CH
ch (k) it results P in

ch = Pch(k) ∈
[Pmin

ch , Pmax
ch ] when δCH

ch (k) = 1. In addition, being mutually
exclusive, all other logical variables δαch(k), with α 6= CH,
are null. Similar conditions hold for the discharging state
of the battery. The operating condition of the battery, each
δαb (k) is determined as

Pmin
b ≤ Pb(k) ≤ Pmax

b ⇐⇒ δ
CH/DIS
b (k) = 1,

Pb(k) = P STB
b ⇐⇒ δSTB

b (k) = 1,

Pb(k) = 0 ⇐⇒ δ
No−CH/DIS
b (k) = 1.

(1)
Since the battery will work in one and only one mode at

any time k, the additional constraint

δ
NO−CH/DIS
b (k) + δSTB

b (k) + δ
CH/DIS
b (k) = 1 (2)

has to be considered.
The transitions among states is defined by combining

the logical variables with standard logical connectives [8].
According to the number of states, there is 6 possible mode
transitions.

The resulting following inequalities has been derived and
provided as constraints in the proposed MPC controller:

σβα,b(k) = δαb (k − 1) ∧ δβb (k), (3)

where σβα,b ∈ [0, 1].
The modeling approach followed in this paper consists

in deriving a mixed-integer formulation of the operating
constraints and logical devices states (δαb (k)) so as to be
included in a MPC controller and numerically solved.

B. Interaction with the Utility Grid

Two states for power sale and purchase are expressed by
the introduction of two logical variables δpur(k) and δsale(k)
which are either active 1 or inactive 0. We define the set
S = {pur, sale} and the index g ∈ S to indicate the selling
and purchasing events with respect to the microgrid mode.

It follows that:

δg(k) = 1⇔ Cg(k)P g(k) = Pgrid(k) (4)

where
P g(k) = Cg(k)Pgrid(k)δ

g(k), (5a)

Pgrid(k) = P pur(k)− P sale(k). (5b)

In order to avoid simultaneous power selling and buying
with the grid, we introduce the following constraints:

δsale(k) + δpch(k) ≤ 1. (6)

C. Additional constraints

1) State Space Model of the BESS: The battery storage
dynamics are defined as a function of the state of charge
SOC at the previous time step SOC(k), and is modeled as
dynamic equation:

SOC(k + 1) = SOC(k) + ηch(k)Pch(k)δ
CH
ch (k)Ts

− Pdis(k)δ
DIS
dis (k)Ts

ηdis(k)
,

(7)

where Ts is the sampling period, the ηch(k) and ηdis(k) are
the battery charging and discharging efficiencies.

2) Feasibility and operating constraints: The power bal-
ance equations for the microgrid is:

Pres(k)− Pb(k)− Pgrid(k)− Pdump(k) = Pavl (8a)
Pmin,b ≤ Pb(k) ≤ Pmax,b (8b)
SOCmin ≤ SOC(k) ≤ SOCmax. (8c)

Pavl is the remaining, available power used to meet the load
requirement. Pdump is the hypothetical excess of power that
could neither be sold nor stored.

D. The battery lifetime quantification method

The battery life time quantification method has been
reported in the literature to be accurate [9], and is used in
this manuscript. The constraints in Equation (9) are used
to determine the BESS partial cycles. The value of partial
discharge cycles (Pd) will be 1 every time the discharging
process is initiated, otherwise it is 0, following [10].

δDIS(k)− δDIS(k − 1) = 1 =⇒ Pd(k) = 1,

δDIS(k)− δDIS(k − 1) ≤ 0 =⇒ Pd(k) = 0.
(9)



1) Depth of Discharge: The formula shown in Equa-
tion (10) is used to calculate the optimal depth of discharge
(DOD) at each time interval.

DOD(k) = 1− SOC(k). (10)

DODmax = max(DOD(k)). (11)
Since a discharge vary in depth, the optimal depth of
discharge at each counted partial discharge cycle at time
interval k depends on the DOD at the previous time, k − 1
and the DOD at the period k, as given in Equation (12):

DODPd
(k) = DOD(k)−DOD(k− 1). (12)

2) Estimation of BESS Lifetime: We use Miner’s rule,
following [9], [11], to estimate the aging of the battery.
The summation of the BESS partial cycles, Ncycles over
the planning time horizon (24h, or one day, in the present
work) is compared to the maximum number of cycles CF,
as provided by the manufacturer.

Cag =
Ncycles

CF
, (13)

where Cag defines the the battery aging, while CF is the
battery number of cycles to failure at maximum DOD =
80% and is usually around 3000 for Li-ion batteries.

The estimation of the number of performed partial cycles
is done by summing, for each discharge DODPd

, the corre-
sponding fraction of numbers of cycles to failure CFPd

at
DODPd

. Essentially, it means associating any discharge to
a fraction of a complete cycle:

Ncycles =
∑
k

Pd(k)/CFPd
(k). (14)

The number of cycles to failure (CFPc
) depends on DODPd

.
It is obtained from the relation between life cycle and depth
of discharge. Finally, the lifetime Lt of the battery, in years,
is simply the inverse of the Cag:

Lt =
1

365× Cag
. (15)

Estimating the number of complete discharge cycles is
done by comparing the Lt of a battery system to its
maximum number of discharge cycles, as given by the
manufacturer. The number of complete cycles per year NCC
is calculated as:

NCC =
CF
Lt
. (16)

III. SYSTEM COSTS

This section explains the under study microgrid overall
system costs, respectively associated with the grid, the bat-
tery and the meeting the power demand.

A. Grid cost function

The cost function of the grid can be defined as follows

Jgrid(k) =

[
−
(
Csale,T−1
k

)>
P sale,T−1
k

+
(
Cpch,T−1
k

)>
P pch,T−1
k

]
Ts,

(17)

where Csale,T−1
k and Cpch,T−1

k are column vectors contain-
ing, respectively, all the energy sale/purchase prices at each

time-step k, while P sale,T−1
k and P pch,T−1

k are the logical
power vectors required to hide the non-linearity.

B. Operating cost functions

The overall battery storage energy system is proposed as

Jbatt(k) =

(
CCbat

Cyclesbat

)
δ
CH/DIS
b (k)

+ Costβα,bσ
β
α,b(k),

(18)

where CCbat is the battery capital cost, Cyclesbat is the
battery working cycles, α, β ∈ A, and α 6= β, k is the
current time instant, and the Costβαb

σβαb
(k) denote the cost

associated with the battery switching modes.

C. Electric reference tracking cost function

The load tracking cost function is given by the cumulative
squared error between Pref and Pavl as

Jl = ||P T−1
avl,k − P

T−1
ref,k ||

2
2 (19)

IV. CONTROLLER DESIGN

The proposed MPC provides a trajectory of future control
inputs satisfying the system dynamics and constraints and
minimizing the microgrid operational costs.

Let us now introduce the set Ck of all the decision variable
vectors at instant k defined as

Ck :=
{
P T−1

b,k ,P T−1
avl,k ,P

T−1
dump,k, δ

α,T−1
i,k ,σβ,T−1α,i,k ,P T−1

grid,k

}
,

(20)
Furthermore, let us define the global cost function to be

minimized by the MPC controller as

J(k) = ωbattJbatt(k) + ωgridJgrid(k) + ωlJl(k), (21)
the positive weighting factors ωb, ωgrid and ωl can be set to
obtain a desired prioritization.

Therefore, the following MPC problem can be formulated
min
Ck

J(k)

s.t.
Discrete logical states (1), Mode transitions (3),
Grid constraints (4), Storage dynamics (7),
Physical constraints,Power balancing equation (8),

α, β ∈ A, α 6= β, δgrid ∈ {0, 1}, δαi , σ
β
αi
∈ [0, 1],

b ∈ I.

(22)

V. SIMULATIONS AND NUMERICAL RESULTS

In this section, the proposed MPC strategy is validated via
numerical simulations based on the data from literature. Sev-
eral (one week) power production and consumption profiles
are considered so as to stress the capability of the controller
to address different scenarios.

As a representative examples, both a week and a day long
simulation horizon have been reported in detailed in this
section.

For simulations, the parameters affecting the cost functions
used by the optimizer are reported in Table 1.



TABLE 1: MPC parameters.
Li-Ion battery parameters
ηch = 0.90 ηdis = 0.95
CCbat = 300 £/kWh Cyclesbat = 3000

CostCH/DIS = 0.055 £ CostNo−CH/DIS = 0.055 £
CostSTB = 0.0275 £ Pmin

b = 0.2 kW

PSTB
b = 0.1 kW Pmax

b = 4kW

Weights: ωbatt = 1, ωgrid = 1 ωl = 1

A. One week Result Analysis

Figure 2a shows the requested electric demand and the
renewable generations considered in the case study, respec-
tively.

The utility grid interaction developed in this research study
for electricity buying and selling is shown in Figure 2d. It
is possible to observe from the figure that over a 168 hours
horizon, at each time-step the controller tends to sell energy
to the grid and maximize the revenue by selling during the
high energy selling hours, and vice versa in case of energy
purchasing.

The increment in the battery SOC can be seen in Figure 2b
during these hours.

B. One-day Result Analysis

In order to show the efficacy and the validation of the
proposed MPC, a stressing test plant scenario among the
week long simulations has been detailed.

The Figure 3a show the frequent variations of the electric
demand and the renewable generations.

It is observable that during the hours of high electric
demand i.e., 21-25, the controller takes decision on balancing
the energy equation through renewable generations, battery
SOC, and as a last resort to buy energy from the grid. The
electric demand Pd has the highest priority and therefore the
controller tends to meet the demand in all 24 hours of the
day as can be seen from Figure 3.

Between the hours 3,4-5, 13, 15, the electric demand is
less than the available system power. Therefore, in order to
maximize the revenue the controller set the δsale to 1 as
shown in Figure 3e.

An increment in the battery state of charge during high
RES hours can be shown in Figure 3d.

It is worth mentioning here that as per the novelty of the
proposed approach, at any time step k, the controller put the
batteries in its standby states Figure 3d when there is a small
charging or discharging battery requests available in order to
avoid its frequent charging or discharging cycles.

C. Results Comparison

To further illustrate the paper results, the proposed MPC
scheme is compared with the relevant literature based strate-
gies presented in [9], [12].

Results are summarized in Table 2 concerning the life
extension of the battery, and Table 3 concerning the financial
impact of the present EMS. It corresponds to a 2.97 years
extension of the battery life (22%), with a degradation of
11% of the sales balance, when compared to the literature
approach.

It can be seen that the ON-OFF strategy results in more
switching modes of the battery than the proposed strategy,
as seen Figure 3f. It leads to more degradation in the battery
life cycles.

As it is possible to see from Figure 3c, and the discharging
cycles Figure 3f, the controller frequently sets the devices
in their ON-OFF states, which leads higher life cycles
degradation.

Conversely, the presented approach is able to set the
devices in their stand-by states to keep the battery stacks
warm and to avoid frequent charge/discharge cycles during
the hours 2-7-8,12,15,18,20,22,24, as illustrated Figures 3d
and 3f.

Furthermore, the average DOD for the standard approach
is 37.49%, compared to 31.07% with our approach.

There is a reduction of the sales balance of 11%, however
the life cycle of the EMS is prolonged by 21.7%. It corre-
sponds, when considering the life cycle of the minigrids, of
a net increase of the total revenues of 8.4%.

Influence of the battery weight: We investigated the
effect of the weight ωbatt on the battery life and the profit
earned, see Figure 4.

As expected, increasing ωbatt results in increasing the
battery life. On the other hand, the constraints on the battery
results in buying more from the grid and hence to less
profit. Therefore, this may lead to an not economically viable
system for the wind farm or the solar park owners. This
parametric study of the influence of the weight allows owners
to decide their preferred balance between economic profit,
sustainability and life cycle of the system.

VI. CONCLUSION

In this manuscript, we proposed a novel strategy for
managing a battery-based ESS integrated in a RES facility.

The proposed MPC scheme takes into account the cost that
the battery introduces each time it switch between different
operating modes, thus decreasing the corresponding number
of life cycles and efficiencies.

In conclusion, the main results of the study are: i) the
development of novel dynamic models for battery-based ESS
that take into account the associated working cycle degrada-
tion; ii) the integration of the developed models into a MDL
framework for an MPC strategy to control a target electricity
storage plant; iii) the validation of the proposed strategy in a
grid connected simulation scenario for maximization of both
revenue generation and lifetime of the system; iv) the correct
tracking of the local and contractual user electrical demands.
In particular, the proposed methodology allows to increase
the lifetime of the battery by more than 20%, with a limited
impact on the sales balance and an overall improvement of
the revenue over the life of the equipment.

Future works will integrate the proposed results into a
multi timescale BESS power regulation market, and to de-
ploy the control strategy to the Birmingham City University
laboratory microgrid. Furthermore, a multi-parametric Pareto
analysis of the impact of parameters will also be carried out
in real time energy market environment.
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Fig. 2: Numerical results. (a) Electric demand and renewable generations. (b) Battery SOC presented. (c) Energy Price
Profile. (d) Grid buying/selling. (e) Battery SOC literature. (e) Grid buying/selling literature. Colors available online

TABLE 2: Comparison of the lifetime of the battery system.

Approach Battery working cycles Completed cycles/year Average DOD Lt Life extended (years) Variation
Literature approach [9], [12] 3000 219.13 37.49% 13.69 - -
Presented approach 3000 180.07 31.07% 16.66 2.97 21.7%

TABLE 3: Comparison of one-week performances. SB stands for Sales Balance.

Approach Completed cycles/week Average DOD Life extended/week Battery cycles saved/week SB (AC) Variation
Literature approach [9], [12] 4.21 37.49% - - 47.5 -
Presented approach 3.46 31.07% 0.05(years) 0.75 42.3 -11.0%
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Fig. 3: Numerical results. (a): Renewable generations and Load Demand. (b) Battery number of complete working cycles
with respect to the DOD. (c) ESS SOC without the control strategy. (d) ESS SOC with proposed control strategy. (e): Grid
Buying/selling literature and presented approach. (f): DODPc with literature and presented approach.
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