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LIMSI, Université de Paris Saclay, France

Laurent Cordier

Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, France
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This article presents the application of a continuous Reinforcement Learning (RL) frame-
work to the closed-loop control of the drag of a cylinder wake flow. RL is a pure-driven
approach that can rely on scarce and streaming data to find an optimal control policy for
a task in an unknown environment. An implicit model of the system at hand is learned
from sensor measurements, allowing for gradients evaluation and leading to quick conver-
gence to an efficient control policy. This data-driven method is well suited for experimental
configurations, requiring no computations nor prior knowledge of the system, and enjoys
intrinsic robustness. These properties are highly desirable in flow control where real-time
constraints, limited embedded hardware computational power and severe noise prevent the
use of model-based strategies. Specific issues of reinforcement learning in the context of
closed-loop flow control are briefly discussed.

I. Introduction

While the design and capability of aircraft, and more generally of complex systems, have significantly
improved over the years, closed-loop control can bring further improvement in terms of performance and
robustness to non-modeled perturbations. In the context of flow control, closed-loop control however suffers
from severe limitations preventing its use in many situations. As a paradigmatic example, a typical turbulent
flow involves both a large range of spatial scales and exhibits a rich and fast dynamics. High frequency
phenomena hence require a control command fast enough to adjust to the current state of the quickly
evolving flow system.

While flow manipulation and open-loop control are common practice, much fewer successful closed-loop
control efforts are reported in the literature. Further, many of them rely on unrealistic assumptions. If
a model is employed as is common practice, being a high-fidelity Navier-Stokes model or a Reduced-Order
Model (ROM), one often needs to observe the whole system for informing the model.1,2 Hence, with this class
of approaches, flow control is restricted to numerical simulations or experiments in a wind tunnel equipped
with sophisticated visualization tools such as Particle Image Velocimetry.

This paper presents a practical strategy for closed-loop control of complex flows by alleviating the limi-
tations of current methods. The present work relies on a change of paradigm: we want to derive a general
nonlinear closed-loop flow control methodology suitable for actual configurations and as realistic as possible.
No a priori model, not even a model structure, describing the dynamics of the system is required to be
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available. The approach proposed is data-driven only, with the sole information about the system given by
scarce and spatially-constrained sensors, and relies on statistical learning methods.3

Among the challenges in machine learning methods, the question of dealing with poor observability and
hidden information remains largely open. In the present work, we handle this issue by taking advantage of
the intrinsic temporal relationship between measurements, as pioneered in.4

Reinforcement learning5,6 is a suitable class of methods for the control of Markov processes, see for
instance7 for the control of 1-D and 2-D chaotic maps. The usual version that consists of considering a
discretized version of the state and action spaces suffers from the so-called curse of dimensionality problem
for large-scale dynamical systems. For this reason, we consider an alternative approach where the states and
actions are continuous. This approach allows to exploit smoothness of the dynamics and the input-output
map. Conceptually, a model is learned, allowing for gradients to be reliably estimated, hence significantly
improving the convergence rate of learning the control policy. This is a significant difference with a critic-only
approach such as Genetic Programming Control2 where the policy is found as the solution of a minimization
problem. The resulting control strategy, being data-driven only, does not require significant computational
resources nor prior knowledge of the system.

The paper is organized as follows. Section II introduces notations and key techniques our approach
relies on. The framework and basics of continuous reinforcement learning are presented in Section III. The
resulting control strategy is illustrated in Section IV with the drag reduction of a two-dimensional cylinder
wake flow. Concluding remarks close the paper in Section V.

II. Preliminaries

II.A. Notations

Let f be the flow map of the underlying dynamical system, we consider in the following the continuous-time
deterministic system,

Ẋt = f (Xt,at) , (1)

where Xt := X (t) ∈ X is the state of the system at time t, and at := a (t) ∈ A ⊂ Rna is the action with na
the number of actuators. Let g : X → Rng be a sensor function, with ng the number of sensors, the observed
data at time t, yt ∈ Rng are defined as yt := g (Xt).

II.B. Embedding

To simplify the description of the dynamics, a simple method of delays as described in8 is used to reconstruct
qualitative features of the phase space of the system from time series of measurements of a single observable
yt. For that, sampling has to be fast enough to capture the small time scales of the dynamics of the
observable. The embedding dimension ne is defined as, at least, twice the correlation dimension of yt that
is estimated from time-series of the observable, using for instance the Grassberger-Proccacia algorithm.9

Let ∆t be the sampling rate of the measurement system, the data from the sensors are embedded in a
reconstructed phase space Ω defined as:(

yTt y
T
t−∆t . . .y

T
t−(ne−1)∆t

)
:= YT

t ∈ Ω ⊂ Rne×ng . (2)

Under mild assumptions,8 this embedding ensures there is a diffeomorphism between the phase space X and
the reconstructed phase space Ω, so that Yt is an observable of the system.

II.C. Delayed effect of the action

In many physical system of interest in flow control (for example the one described in Sec. IV), there is a
delay τd between the introduction of the action and the measured effect by the sensors. To control these
kinds of systems with a reinforcement learning algorithm, we need to extend10 the reconstructed state Yt

with all the actions applied to the system between t − τd and t. Finally, the state of the system at time t,
xt, is defined as (

YT
t a

T
t a

T
t−1 · · · aTt−d

)
:= xTt ∈ S = Ω×Ad, (3)

where d := d τd∆ta
e corresponds to the number of actions applied between t − τd and t, ∆ta being the time

between two consecutive actions.
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II.D. Identification of Local Linear Models

In the continuous framework of reinforcement learning, we would like that experience acquired on a limited
subset of the state space be usefully generalized to produce a good approximation of quantities of interest over
a much larger subset. This problem of generalization11 can be cured by relying on function approximations.
Many methods for approximating functions are available. Here, to approximate the different quantities
involved in reinforcement learning, we use a local linear regression (LLR).12 For a quantity z depending on
generic parameters θ, the principle is to store in a matrix called the memory, an ensemble I of samples{
θ(i), z(i)

}
i∈I

previously determined. When a query ϑ is made, LLR uses a limited number of samples of

the memory to give a prediction ẑ (ϑ) of the true output z (ϑ). With a local least squares technique, the
approximation is given by

z (ϑ) ≈ ẑ (ϑ) = β

(
ϑ

1

)
, (4)

where only the K nearest neighbors K (ϑ) of ϑ is used for the determination of β. This coefficient can

be determined through a pseudo inverse as β = Z Θ+ where Θ :=

{θ(i)
}
i∈K(ϑ)

1K

 ∈ R(nθ+1)×K and

Z :=
({
z(i)
}
i∈K(ϑ)

)
∈ Rnz×K collect the relevant inputs and outputs from the database. β ∈ Rnz×(nθ+1) is

composed of a bias term and an approximation of the gradient of z around ϑ. Efficient strategies are used
to manage and update the collection of samples.13

III. Continuous reinforcement learning

Classical reinforcement learning approaches are based on the assumption that we have a Markov Decision
Process (MDP) consisting of the set of states X , set of actions A, the reward function r : X × A → R and
γ ∈ [0, 1] a discount factor.

The goal of reinforcement learning is to discover an optimal policy π : X → A that maps states to actions
so as to maximize the Value function, V π, defined as the sum of the future expected rewards when starting
at state Xt :

V π (Xt) :=

∫ +∞

t

e−
s−t
τ r(Xs,as) ds, as := π (Xs) . (5)

τ is the time constant for discounting future rewards. An important feature of this infinite-horizon formu-
lation is that the value function and the policy do not depend explicitly on time, which is convenient in
estimating them using function approximators. With some manipulation, (5) may be reformulated as the
Bellman equation associated to the optimal policy:14

V π (Xt) = max
at[t,+∞[

[r(Xt,at) + γV π(Xt+1)] , (6)

where γ = e−
∆t
τ with ∆t the sampling time. To determine an optimal policy, the rewards associated with

an action when in a given state are first learned. Then, this information is used to derive a control policy to
drive the system along transitions and actions associated with the largest rewards.

Reinforcement Learning is a suitable class of methods for the control of Markov processes when the
distribution of transition probabilities and values are difficult to evaluate.5,15,16 In the following, the algo-
rithm we consider is based on the sequential minimization of the temporal difference defined at time t as the
difference between the two sides of the Bellman equation (6). This quantity, also called inconsistency, can
be obtained by differentiating the Value function (5) i.e.

δt := r(Xt,at) + γV π(Xt+1)− V π(Xt). (7)

We now introduce a model-based continuous method for minimizing the temporal difference. In our case,
the state Xt is unknown and, in the following, we use xt instead, which only involves accessible information
on the system. The value function V π is approximated with the use of local linear models.13 We note V̂ π(x)

the approximation of the value function, see Sec. II.D, V̂ π(x) = βV

(
x

1

)
. The flow map φ of the system,
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which describes the evolution of xt, and the policy π are also approximated with the use of local linear

models. We have x̂t+1 = φ̂(xt,at) = βφ

xtat
1

, and π(xt) ≈ π̂(xt) = βπ

(
xt

1

)
.

The temporal difference equation (7) can then be used for updating the estimated value function13

following

V̂ π ← V̂ π + αt,c δt e, (8)

where e ∈ [0, 1]|I| is the eligibility trace,11 and αt,c ∈]0, 1[ is a learning rate. The concept of eligibility trace
represents a temporary record of the occurrence of an event, such as the visiting of a state or the taking of
an action. Essentially, the trace e marks the memory parameters associated with the event as eligible for
undergoing learning changes. The importance of these events decays with time with a factor λ ∈ [0, 1]. The
eligibility trace is then updated as

e← λ e, (9)

where ei = 1 for i ∈ K(xt). The policy is also updated. At each time t, the actions
{
a(i)

}
i∈K(xt)

, used for

the approximation of the policy (see (4)) are modified. Finding the optimal policy requires to maximize the
value function. Consequently, at any time t, the optimal corrections ∆a have to follow the gradient of the
value function with respect to the chosen action a i.e.

∆a ∝ αt,a ∇aV̂ π, (10)

with αt,a ∈]0, 1[ a learning rate. The gradient in (10) cannot be directly evaluated, but assuming that the
Bellman equation (6) is satisfied, one can write:

∇aV̂ π = ∇ar(Xt,at) + γ∇aV̂ π(x̂t+1). (11)

The first term of the right hand side is analytically known. Using the chain rule, the second term can be
decomposed as13

∇aV̂ π(x̂t+1) =
(
∇xV̂ π(x̂t+1)

)T
∇aφ̂(x, a) = βVx βφa, (12)

where βVx correspond to the part of βV associated with the state xt, and βφa correspond to the part of βφ

associated with the action a. The actions are then updated following :

a(i) ← a(i) + ∆a with i ∈ K(xt). (13)

To improve the performance of the algorithm, exploration is added every p time steps by randomly perturbing
the command law :

a← a+N (0,Σ), (14)

where N (0,Σ) denotes a centered Gaussian noise with covariance Σ, here chosen as Σ = σ2 Ina .

IV. Proof-of-concept: Two-dimensional cylinder wake flow

Table 1. Parameters of the Model Learning Actor-Critic algorithm of.13

Actor Critic Model

Learning rate αt,a = 0.002 αt,c = 0.005 -

Memory size |Ia| = 10000 |Ic| = 10000 |Im| = 10000

Neighbours Ka = 80 Kc = 80 Km = 80

Other parameters

γ 0.93

λ 0.7

ρ 0.1

To illustrate the methodology discussed above, we consider a 2-D laminar flow around a circular cylinder.
The Reynolds number of the flow is Re = 200 based on the cylinder diameter and the upstream flow velocity.
The observable yt is constructed from the time series {y (t− n∆t)}ne−1

n=0 of an array of three pressure sensors
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Figure 1. Time evolution of the drag force FD for the cylinder wake flow at Re = 200. Pale brown corresponds to the
drag associated with the uncontrolled flow. Dark brown is the drag obtained by reinforcement learning at convergence.
Blue corresponds to the control law determined by reinforcement learning.

located half a radius downstream the cylinder, sampled every ∆t = 5 time units. The embedding dimension
is determined to be ne = 2. We use the finite element code Feel++17 to solve the Navier-Stokes equations
on an unstructured grid. Free-stream velocity boundary conditions are imposed at the top and bottom of
the numerical domain. The time step of the simulation is dt = 0.1 time unit (t.u.).

The control is achieved via rotation of the cylinder at a rotational speed denoted by a (t). The actuation
is updated every two time units. J , the cost function to minimize is the sum of the drag FD induced by the
cylinder and a penalization term corresponding to the intensity of the command, i.e.

J (Xt, a) = −r(Xt, a) = −ρF 2
D − a2. (15)

The drag FD is a function of the state Xt. The penalty ρ > 0 is chosen such that the resulting command
remains within the operating range of the control.

The total time of simulation is 1500 t.u. which corresponds to about 400 periods of vortex shedding.
The exploration is added every 10 time steps, up to t = 750 t.u., with an amplitude of 0.5 rad.(t.u.)−1. The
maximum rotation speed of the cylinder is set to 5 rad.(t.u.)−1. The other parameters of the algorithm are
presented in Table 1.

The drag coefficient of the cylinder is plotted in Fig. 1 for the optimal policy determined by reinforcement
learning and also for the uncontrolled flow (a = 0). The identified control is seen to perform well. The drag
is reduced by 17 % and the control command oscillates at the period of the wake, half the frequency of the
drag, as expected.

To illustrate the convergence of the algorithm, the average of the Value function over a sliding time
horizon of 10 t.u. is plotted in Fig. 2. This quantity gives an indication of the expectation of the Value
over the invariant measure set. On this figure, two regimes can be observed. The first one, for t < 700 t.u.,
corresponds to a transient regime, where the algorithm explores the phase space. The second regime, for
t > 700 t.u., shows that the sum of the value increases. For t > 1400 t.u, the algorithm has converged and
the sum of the value reaches a plateau.

V. Concluding remarks

In this work, we present an experiment-oriented control strategy which does not require any prior knowl-
edge of the physical system to be controlled nor significant computational resources. This strategy allows
the learning of a control policy from scarce and point-wise sensors, hence very limited information on the
system at hand. From the sensors’ streaming data, an implicit model of the state dynamics is built.

The resulting method is compliant with actual configurations where instrumentation is limited and
spatially-constrained. Owing to the construction and the use of low-dimensional models, the algorithm
runs in real-time and allows closed-loop control.

The method is illustrated by the reduction of the drag of the two-dimensional flow around a circular
cylinder. Measurements are provided by an array of pressure probes and actuation is achieved by rotating
the cylinder. 17% of drag reduction is obtained. Current efforts are devoted to control a more involved
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Figure 2. Average of the Value function over a sliding time horizon of 10 t.u..

configuration made of a fluid-structure interaction system in the turbulent regime.
More generally, the method presented in this work is readily applicable to physical systems with a causal

link between the actuators and the cost functional as evaluated from the sensors. It does not rely on a prior
model and instead learns directly from observing the system under stimulation by the actuators, hence being
suitable for practical configurations.

While these preliminary results are encouraging, statistical learning methods face a number of issues
when applied to the closed-loop control of complex fluid flows. Among these, the system is likely not to be
stationary, in contrast with the ergodicity assumption these methods rely on. Further, delays between actions
and sensor measurements are not constant over time while the input-output map may exhibit discontinuities
when the flow topology undergoes a bifurcation. An additional issue is that the training time for statistical
learning-based control is often too large in many situations. These issues should be addressed before the
general concept of statistical learning for flow control can be applied in practical situations. This is the
subject of intense ongoing efforts.
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