
DEEP REINFORCEMENT LEARNING FOR THE REDUCTION OF THE DRAG IN THE
FLOW PAST BLUFF BODIES

P. Mudiyanselage & F. Gueniat*
*Author for correspondence

Department of Mechanical Engineering,
Birmingham City University,

Birmingham,UK
E-mail: florimond.gueniat@bcu.ac.uk

NOMENCLATURE

Q Q-learning value
π Policy (control strategy)
a action value
x state, derived from measurement
Ω support of the states x
A support of the actions a
γ discount rate
R Reward value
Cd drag coefficient
p non dimensional pressure
L diameter of the cylinder
u non dimensional velocity
ui component of u
ρ density
ν kinematic viscosity
t non dimensional time
Re Reynolds number

Subscripts
i, j discrete time steps

or Cartesian direction i
s given state

Abstract
Closed-loop control of engineering flows remains challeng-

ing, even after decades of efforts from the community, and most
of the success are related to passive designs. Additionally, most
of the successfully closed-loop control rely on the unrealistic sit-
uations such as when full information about the system is avail-
able, and heavily rely on either the knowledge of the dynamics or
on an accurate reduced order model. In this work, we present a
model free, fully-data driven methodology that allows to identify
a near optimal control strategy. Noteworthy, this methodology
relies only on scarce sensors such as pressure transducers.
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1 Introduction
While the accuracy of the design of nonlinear, large dimen-

sional and complex systems have significantly improved over
the last decades, the closed-loop control of such systems still
remains challenging. It is desired, in order to improve per-
formance, to increase robustness to non-modeled perturbations.
That includes the cases of ill or partially modelled plants. While

flow manipulation and open-loop control are common practice,
much fewer successful closed-loop control efforts are reported
in the literature. Additionally, in the context of flow control,
closed-loop control suffers from severe limitations, effectively
preventing its use: a typical turbulent flow involves both a large
range of spatial scales and exhibits a rich and fast dynamics. As
a consequence, controllers have to be able to react very quickly
to changes in the environment. An implication is that practical
implementation needs reduced-order models. Further, many of
them rely on unrealistic assumptions. For example, Model Pre-
dictive Control (MPC) approaches require to solve the governing
equations in real-time. If a Reduced-Order Model (ROM) is em-
ployed, as is common practice to alleviate the CPU burden, de-
riving the ROM means using the velocity or pressure fields with,
e.g., proper orthogonal decomposition, see, for instance, [1; 2;
3].

Hence, flow control with this classes of approaches is re-
stricted to numerical simulations or experiments in a wind tunnel,
equipped with sophisticated visualization tools such as particle
image velocimetry. Many closed-loop control efforts of the liter-
ature rely on the unrealistic situation of full information about the
system. Even when a reduced-order model (ROM) is employed,
full information on the system is required to evaluate and tune
the time-dependent coefficients associated with the modes of the
ROM, see, e.g., [1], among many others. Many approaches from
the flow control literature also rely on strong assumptions such
as linearity of the governing equations of the system.

The present work relies on a change of paradigm started by
the author, [4]: we want to derive a general nonlinear closed-loop
flow control methodology suitable for actual configurations and
as realistic as possible. Contrary to MPC, no a priori model, nor
even a model structure, describing the dynamics of the system is
required to be available. The approach proposed is data-driven
only, with the sole information about the system given by scarce
and spatially-constrained sensors. The method then exploits sta-
tistical learning methods. It is achieved in two steps. We consider
that the information yon the system at hand is limited and comes
from a few sensors (located at the boundary of the fluid domain,



e.g., on solid surfaces). The resulting information takes the form
of short time-dependent vectors. The first step is to build a state-
observer, based on this information. It allows to correctly recon-
struct the information needed to estimate the state of the system
or, more generally, the quantity of interest (QoI) that is needed
for deriving the control law, for instance the instantaneous drag
forces on a body.

The second step is the use the recent advances in deep rein-
forcement learning to derive the control law. As will be seen in
the application examples, the resulting control strategy is data-
driven only, intrinsically robust against perturbations in the flow
and does not require significant computational resources nor
prior knowledge of the flow once the models have been trained,
making it desirable in practical situations.

Both steps are illustrated sucessfully on the case of the flow
past a cylinder, where the QoI is the drag coefficient.

Sec. 2 describes the numerical setup and the methodology.
Results are presented and discussed Sec. 3. The manuscript ends
on concluding remarks in Sec. 4.

2 Methodology
2.1 Deep reinforcement learning

To derive a control strategy, one needs to determine a policy
π. It simply consists in determining the best control action a
w.r.t the current measurements, or state x, at hand. Rewards R :=
R
(
x,a
)

are associated with both the action (if it is costly) and
the effect, desired or not, it has on the system. The value of the
reward will help chose the correct action to take. For instance,
actions associated to the highest rewards are giving the best short
term results, it is known as the greedy policy. However the best
policy aims at maximizing the rewards on the long term, via the
expected value of the rewards:

φ =
N

∑
i

γ
iRi (1)

The subscript denotes the discrete times. γ is the discount factor,
essentially more weight is given to most recent state compared
to older ones.

Under actions, the system is evolving, hence the states are
changing. When the probabilities of transition from a state to an-
other are known, the optimal policy may be identified by means
of a dynamic programming algorithm, [5; 6]. Usually, the tran-
sition probabilities are extremely difficult to identify as both the
control policy and the transition probabilities (due to memory
effect) can evolve during the learning stage. In this situation,
Reinforcement Learning is a suitable class of method, [7]. In
particular, the Q-learning approach consists in relying on the es-
timation of the Q-factors, or action-values, Qπ which evaluate
the expected reward of a state-action combination when follow-
ing the policy π:

Qπ(xi,ai) :=
〈
Ri+1 + γRi+2 + γ

2Ri+3 + . . . |xi,ai
〉
, (2)

where 〈.|x,a〉 is the expected sum of the discounted cumulative
reward knowing the state x and taken action a.

As stated previously, the transition probabilities from xi to
xi+1 can not be accurately estimated. It means that calculating
the expected sum is impossible. However, an iterative estima-
tion of the Q-factors can be derived, [7; 8]. Letting the initial
Q-factors be given, the Q-factor associated with a state xs and an
action as can be updated following the Bellman equation:

Q(xs,as)← Q(xs,as)︸ ︷︷ ︸
old value

+αs

(
R(xs,as)+ γmax

ã∈A
Q(xs+1, ã)︸ ︷︷ ︸

“best” value

−Q(xs,as)︸ ︷︷ ︸
old value

)
, (3)

where αs > 0 is a learning factor.
The action-value Q(xs,as) will increase when the reward as-

sociated with the 2-uplet (xs,as) is good, and decrease otherwise.
To learn a good policy π, the system, in different states xs

is stimulated with different actions as to estimate the Q-factors.
Once converged to Qπ, the control policy is simply taking the
action which is associated with the largest Q-factor, [7]:

a(x) = argmin
ã∈A

Q(x, ã) (4)

Q-factors are easily identified when the system is discrete, as
Q(x,a) is a table. When considering continuous states and ac-
tions, the generalization of the previous method, known as deep
reinforcement learning, relies on function approximators: a neu-
ral network replaces the Q-factors, as illustrated Fig. 1. The net-
work is composed of a state estimator (feature extraction) net-
work followed by an actor network composed of two fully con-
nected layers. The learning still follows the Bellman equation,
following Eq. (3).

One of the main advantages of this approximation is the in-
herent ability of neural network to work well in the case of pre-
viously unseen inputs. It means an intrisic robustness to noise
and uncertainties. In this preliminary work, the TRPO algorithm
has been used, [9], using an out-of-the-shelf implementation 1.

2.2 Two-dimensional numerical flow
To further illustrate the methodology discussed above, we

consider a 2-D laminar flow around a circular cylinder.

Configuration of the test case The present simulations are
carried out using OpenFOAM 2 to solve the continuity and in-
compressible Navier-Stokes equations, solved on the 2D flow
domain D . The spatial and temporal coordinates are denoted
by xi and t. All the physical variables are nondimensionalized by

1https://github.com/hill-a/stable-baselines/
2www.openfoam.org

https://github.com/hill-a/stable-baselines/
www.openfoam.org
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Figure 1: Schematic workflow of the deep reinforcement learning method applied to flow control.

the inlet uniform velocity u∞ = 1 and the diameter of the cylinder
L = 1m.

∂ui

∂xi
= 0,

∂ui

∂t
+u j

∂ui

∂x j
=−1

ρ

∂p
∂xi

+ν
∂2ui

∂x2
i
.

(5)

The equations are solved by a finite volume method and the
PIMPLE algorithm. Turbulence is resolved using the Realizable
k−ε model. The Reynolds number Re was fixed at 200, meaning
that the nondimensional kinematic viscosity is fixed at ν = 0.05.

The cylinder is represented by its surface ∂Dcyl . The drag
force Fd,i is calculated by integrating the normal pressure and the
tangential viscous contributions on the cylinder surface on the x1
direction. The drag coefficient is defined as:

Cd i =
Fd,i

1/2ρAu2
∞

, (6)

where the inlet velocity, being adimensionate, the front surface
is A = 1m2 and Fd is the drag force on the cylinder.

Validation of Numerical Models The dimension of the com-
putational domain, normalized by the cylinder diameter, are
25L×10L, and the distance of the cylinder to the inlet is 5L.

The numerical resolution of the unstructured mesh was de-
termined after a grid refinement study to ensure the grid-
independency of the solution, and verified against the Strouhal
number associated with the vortex shedding of the 2D unactu-
ated flow, [10]. The difference is within 2%. Post processed

calculation of the y+ wall coordinates has been done as well, to
verify it remained in the valid domain of the turbulence model.
The total number of cells used was 149029.

Actuators Two suction and oscillatory blowing actuators
(SaOBAs) are considered, [11]. They correspond to two slots
of a length of l = 0.1745m each, on the surface of the cylinder.
One is on top of the cylinder, the other one is on the bottom of
the cylinder: ai = (atop,i,abot,i). They represent a suction and
blowing wall actuation of the flow, see Fig. 2. The value of the
actuation corresponds to the velocity condition imposed on the
wall, along the x2 direction, and is limited for both actuators to
the range [−1,1]. Note that the actuations are totally decoupled,
as seen on Fig. 2, where the top actuation is weakly negative
while the bottom actuation is strongly positive. This configu-
ration has been chosen on purpose. In this low Reynolds case,
continuously sucking in the boundary layer is the optimal way to
inhibit its growth, [12; 13], as long as the cost of actuating the
system is neglected. However, in the present case, the amount of
fluid removed from the boundary layer (or the amplitude of ac-
tuation) cannot be enough to remain below the critical Reynolds
and fully relaminarize the flow. It will be considered as the ora-
cle in the following to compare the efficiency of the control.

Sensors Observations comes from 18 sensors. The sensors are
wall pressure measurements, evenly distributed around the cylin-
der. They are similar to dynamic pressure transducers.

2.3 Reward formulation
The reward has been constructed as the sum of a few parts

corresponding to the several objectives:

Ri = RCd ,i +Ra,i +Rreg,i (7)



Figure 2: Typical actuation of the flow. Colors encode the u2
field and are available online. Actuators are visible on the two
sides of the cylinder

The first objective is the reduction of the drag coefficient Cd . A
low drag is to be associated to large reward, consequently:

RCd ,i =−wd(Cd i−1.55) (8)

The value 1.55 has been chosen as close to the average drag, to
make the reward positive when the drag coefficient is low, and
negative when high. wd is a weight fixed to 1 in the setup. The
second objective is the take into account the actuation cost, de-
fined as the intensity of the actuation. A large actuation is penal-
ized as:

Ra,i =−wa||ai||2. (9)

wa is a weight fixed to 0.1 in the setup. It is hence expected
that the actuation identified by the proposed methodology to be
around 10% lower that the oracle one.

The last objective is to avoid large fluctuations of the drag,
which corresponds to replicating a bang-bang controller, i.e. a
controller only activated when the drag is too high. A regular-
ization term is hence introduced, as the sum of difference in the
past Nreg = 5 drag coefficients:

Rreg,i =−wreg

Nreg

∑
k=0
|Cd i−k−Cd i−k−1| (10)

wreg is a weight fixed to 0.1 in the setup.

3 Results and Discussions
The training has been done on 5000 time steps, for a total of

96h cpu time on a single processor machine. It is already a sig-
nificant computational burden, in a reasonable numerical setup.
However, the deep reinforcement learning has produced the ex-
pected outputs. Results are summarized Tab. 1 and illustrated
Fig. 3. The average actuation is nearly constant, and is found to
be 13% smaller than in the oracle case, which was expected with
the definition of the cost function. The baseline, time averaged
drag coefficient for the cylinder is 1.531, [10]. The main results
is a reduction of the time-averaged coefficient Cd of 29%, com-
pared to the 33% with the oracle case. Notably, the amplitude
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Figure 3: Drag coefficient. At t=10, the controller is turned on.
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Figure 4: Vorticity field and streamlines averaged in time a: un-
controlled case and b: controlled case. Colors are available on-
line.

of the oscillations are diminished by 77% (82% with the oracle
case).

The identify control law corresponds to the near optimal pol-
icy, which consists in maximum constant suction on both actua-
tors. The difference with the oracle control law is explained by
the costs associated to the actuation in Eq. (9). It is translated by
an average reward lower for the oracle case by 12.5%, and hence
a suboptimal control w.r.t. to definition of the cost. As the differ-
ence on flow fields are indiscernible, for the sake of brevity, only
the results obtain with the proposed methodology are reported in
Figs. 4 and 5.

Under the action of the controller, the average recirculation
bubble length has been increased, while its height has decreased,
as seen Fig. 5 and Tab. 1. The separation angle is also re-
duced, [14]. It mainly explains the gain in drag. The oscillations



Table 1: Main results comparing the baseline, the oracle policy and the identified policy. Results are the drag coefficient Cd , rewards and
recirculation bubble dimensions. The height is measured at a distance of 0.3L from the edge of the cylinder.

case baseline oracle present

average reward 0.16 4.64 5.22

average drag coefficient 1.531±0.035 1.028±0.006 1.086±0.008

average actuation (0,0) (-1,1) (-0.79,0.83)

recirculation length 0.85L 1.05L 1.01L

recirculation height 1L 0.76L 0.82L

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5: z-vorticity and streamlines during a vortex-shedding
cycle. Colors are available online. Left column: baseline case.
Right column: present methodology.

are not fully laminar, as the amount of fluid withdrawn does not
prevent the critical Reynolds to be reached, even in the oracle
case (see oscillations Fig. 3). We expect that development of a
better tailored reward function in that respect will help to identify
a control law more efficient at fully laminarizing the wake. The
exploration is mostly guided toward reducing the drag and the

weight given to the actuators is low. As illustrated in Tab. 1 and
as expected, the obtained results are sensitive to the definition of
the cost function. In the present configuration and objectives, the
identified control law is near optimal, [12].

4 Conclusion
The present work has investigated the use of deep reinforce-

ment learning applied to the closed-loop control of engineering
flows. The considered system is a cylinder flow, with two blow-
ing/sucking wall actuators. This proof of concept has been done
at low Reynolds number. The actuators are fully controlled by
the developped controller, and a near optimal control law is iden-
tified. Even in this simple configuration, it is shown that the com-
putational effort is quite significant. However, this work shows
the promises of such an approach, as it is fully data-driven and
equation free, and a solution close to the expected one has been
found. It shows an effective drag reduction of 29%. Future works
are planned to apply this methodology to an experimental case,
where the computational burden will not be a limitation.
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